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Abstract

Building on Vijh (Rev. Financial Stud. 7 (1994)), we use additions to the S&P 500 to

distinguish two views of return comovement: the traditional view, which attributes it to

comovement in news about fundamental value, and an alternative view, in which frictions or

sentiment delink it from fundamentals. After inclusion, a stock’s beta with the S&P goes up. In

bivariate regressions which control for the return of non-S&P stocks, the increase in S&P beta

is even larger. These results are generally stronger in more recent data. Our findings cannot

easily be explained by the fundamentals-based view and provide new evidence in support of

the alternative friction- or sentiment-based view.
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1. Introduction

Researchers have uncovered numerous patterns of comovement in asset returns.
There are strong common factors in the returns of small-cap stocks, value stocks,
closed-end funds, stocks in the same industry, and bonds of the same rating and
maturity. There is common movement of individual stocks within national markets
and also among international markets themselves.
A substantial body of work examines whether the sensitivity of asset returns to

common factors such as these can help explain average rates of return. Much less
work, however, has been done to understand why common factors arise in the first
place. Why do certain groups of assets comove while others do not? What determines
assets’ betas on these common factors? In this paper, we consider two broad theories
of comovement—one traditional, the other more novel—and present new evidence
to distinguish between them.
The traditional theory, derived from economies without frictions and with rational

investors, holds that comovement in prices reflects comovement in fundamental values.
In a frictionless economy with rational investors, price equals fundamental value—an
asset’s rationally forecasted cash flows discounted at a rate appropriate for their risk—
and so any comovement in prices must be due to comovement in fundamentals.
In economies with frictions or with irrational investors, and in which there are

limits to arbitrage, comovement in prices is delinked from comovement in
fundamentals. This suggests a second broad class of ‘‘friction-based’’ and
‘‘sentiment-based’’ theories of comovement. We examine three specific views of
comovement that can be described in these terms.
The first is the category view, analyzed by Barberis and Shleifer (2003). They argue

that, to simplify portfolio decisions, many investors first group assets into categories
such as small-cap stocks, oil industry stocks, or junk bonds, and then allocate funds
at the level of these categories rather than at the individual asset level. If some of the
investors using categories are noise traders with correlated sentiment, and if their
trading affects prices, then as they move funds from one category to another, their
coordinated demand induces common factors in the returns of assets that happen to
be classified into the same category, even when these assets’ cash flows are
uncorrelated.1

Another kind of comovement, which we refer to as the habitat view, starts from
the observation that many investors choose to trade only a subset of all available
securities. Such preferred habitats could arise because of transaction costs,
international trading restrictions, or lack of information. As these investors’ risk
aversion, sentiment, or liquidity needs change, they alter their exposure to the
securities in their habitat, thereby inducing a common factor in the returns of these
securities. This view of comovement predicts that there will be a common factor in
the returns of securities that are held and traded by a specific subset of investors,
such as individual investors.
1Mullainathan (2002) provides a more general analysis of the use of categories for processing

information.
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A third view of comovement, the information diffusion view, holds that, due to
some market friction, information is incorporated more quickly into the prices of
some stocks than others. For example, some stocks may be less costly to trade, or
may be held by investors with faster access to breaking news and the resources
required to exploit it. In this view, there will be a common factor in the returns of
stocks that incorporate information at similar rates: when good news about
aggregate earnings is released, some stocks reflect it today and move up together
immediately; the remaining stocks also move up together, but only after some delay.2

Early evidence of friction- or sentiment-based comovement can be found in Vijh
(1994), who studies changes in the market betas of stocks added to the S&P 500
index. Standard & Poor’s emphasizes that in choosing stocks for inclusion in the
S&P 500, they are simply trying to make their index as representative as possible of
the overall U.S. economy, not signaling an opinion about fundamental value. If so,
inclusion should not change investors’ perception of the correlation of the included
stock’s fundamental value with other stocks’ fundamental values. Under the
traditional view of comovement, then, inclusion should not change the correlation of
the included stock’s return with the returns of other stocks.
The friction- or sentiment-based views make a different prediction. Consider first

the category and habitat views. The vast popularity of S&P-linked investment
products, such as S&P mutual funds, futures, and options, suggests that the index is
a preferred habitat for some investors and a natural category for many more. When
a stock is added to the S&P, it enters a category (habitat) used by many investors and
is buffeted by fund flows in and out of that category (habitat). If arbitrage is limited,
these fund flows raise the correlation of the included stock’s return with the returns
of other stocks in the S&P.
The information diffusion view also predicts a rise in the correlation of the added

stock’s return with the S&P return. Under this view, stocks in the S&P 500 are quick
to incorporate news about aggregate cash flows, perhaps because they have
particularly low trading costs or are held by investors with better access to news.
When a stock enters the S&P, it starts to incorporate market-wide news at the same
time as other S&P stocks, rather than, say, a day later. As a result, it comoves more
with other S&P stocks after inclusion than before.
In fact, Vijh (1994) finds that at both daily and weekly frequencies, stocks added to

the index between 1975 and 1989 experience a significant increase in their betas on
the value-weighted return of NYSE and AMEX stocks, a close proxy for the value-
weighted S&P return. In contrast to the fundamentals view, but consistent with the
three friction- or sentiment-based views, addition to the index leads to a shift in the
correlation structure of returns.3
2A related view, that makes similar predictions, is that it is market-wide sentiment and not just market-

wide cash-flow news that is incorporated more quickly into some stocks than others. In this view, there will

be a common factor in the returns of stocks that incorporate sentiment at similar rates.
3Vijh (1994) computes betas with the overall market return rather than with the S&P return because his

main objective is to understand whether investor trading patterns affect the standard measure of asset

risk—market beta—and not to design the most powerful test of friction- or sentiment-based comovement.
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In this paper, we return to additions to the S&P 500 and provide new evidence in
support of the friction- or sentiment-based theories of comovement. First, by
applying a univariate regression analysis similar to Vijh’s to the longer sample of
data now available, we uncover considerably larger effects. While stocks added to
the S&P during 1976–1987 experience an average increase in daily S&P beta of 0.067
after inclusion, the average increase in the 1988–2000 period is 0.214. In light of the
growing importance of the S&P 500 as both a category and a habitat, the fact that
the effect is not only present but larger in more recent data is especially supportive of
the friction- or sentiment-based views.
Our second and principal contribution is to introduce a bivariate regression test to

distinguish between the two broad theories of comovement. The friction- or
sentiment-based views imply that, in a bivariate regression of a stock’s return on
both the S&P and a non-S&P ‘‘rest of the market’’ index, the S&P beta should go up
after inclusion while the non-S&P beta should fall; that these patterns should go in
the opposite direction for stocks deleted from the index; and that they should be
stronger in more recent data. The fundamentals view, in contrast, predicts no shift in
S&P and non-S&P betas after inclusion.
The bivariate regressions provide evidence of friction- or sentiment-based

comovement altogether stronger than that uncovered by the univariate tests. At
daily, weekly, and even monthly frequencies, the bivariate tests show a striking
increase in S&P betas and decline in non-S&P betas. At the daily frequency, for
example, S&P betas increase by 0.326 on average over the 1976–2000 period, while
non-S&P betas fall by an average of 0.319. Significant results in the opposite
direction are observed when stocks are deleted from the index, and the effects are
quantitatively larger in more recent data.
We examine the robustness of these findings in several ways. We obtain similar

results when analyzing the data from a ‘‘calendar time’’ rather than an ‘‘event
time’’ perspective. We also find that the results cannot be attributed to thin
trading. Finally, we show that the shifts in S&P betas for stocks added to the index
are much larger than those for a sample of ‘‘matched’’ stocks, namely stocks similar
to the event stocks in a number of characteristics, but which are not included in the
index. This last observation rules out certain fundamentals-based explanations of
our results under which inclusion in the S&P coincides with a change in the
correlations between stocks’ fundamental values, even if it does not cause such a
change.
While our results are consistent with all three variants of friction- or sentiment-

based comovement—category, habitat, and information diffusion—we also attempt
to determine how big a role each of them plays. In particular, we decompose the shift
in betas around inclusion into a component due to information diffusion and a
residual component, more likely due to category and habitat effects. The
information diffusion story has the distinguishing feature that it predicts nonzero
cross-autocorrelations between S&P and non-S&P returns. We can therefore identify
its effect by including lead and lag terms in the regressions. Our analysis suggests
that a small fraction of the daily univariate results and a much larger fraction of the
daily bivariate results are due to information diffusion effects.
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Our paper adds to a growing body of evidence that can be naturally understood as
friction- or sentiment-based comovement. Froot and Dabora (1999) show that the
returns of Royal Dutch shares are surprisingly delinked from the returns of Shell
shares, even though the two stocks are claims to the same cash-flow stream and
therefore have the same fundamental value. Hardouvelis et al. (1994) and Bodurtha
et al. (1995) show that closed-end country funds comove as much with the stock
market in the country where they are traded as with the stock market in the country
where their assets are traded. Lee et al. (1991) find that domestic closed-end funds
often comove with small-cap stocks even when their asset holdings consist of large-
cap stocks. Pindyck and Rotemberg (1990) uncover evidence of excess comovement
in the prices of seven major commodities. Fama and French (1995) show that it is
hard to connect the strong common factors in the returns of value stocks and small
stocks to common factors in news about earnings.4

Greenwood and Sosner (2002) test the friction- or sentiment-based views using
data on additions to and deletions from the Nikkei 225 index. They find increases in
beta and R2 following addition to the index, and decreases following deletions. Their
evidence is therefore also consistent with our predictions; if anything, the results for
the Japanese data are even stronger than those for the U.S. data.
A large literature examines whether index inclusion has a contemporaneous effect

on price levels. Harris and Gurel (1986), Shleifer (1986), Lynch and Mendenhall
(1997), and Wurgler and Zhuravskaya (2002) find strong price effects for S&P 500
inclusions, while Kaul et al. (2000) and Greenwood (2004) find similar effects in the
Toronto Stock Exchange TSE 300 and Nikkei 225 indices, respectively. This
literature argues that uninformed demand affects price levels; our paper shows that it
may also affect patterns of comovement.5

In Section 2, we present the basic predictions of the three friction- or sentiment-
based views of comovement. In Section 3, we test these predictions using data on
S&P 500 inclusions and deletions. Section 4 concludes.
2. Theories of comovement

The traditional theory of return comovement is the fundamentals-based view,
under which the returns of two assets are correlated because changes in the assets’
4Fundamentals-based comovement can be generated through news about discount rates, as well as

through news about earnings. However, changes in interest rates or risk aversion induce a common factor

in the returns on all stocks, and do not explain why a particular subset of stocks comove. A common

factor in news about the risk of certain assets could, in principle, be a source of comovement for those

assets, but there is little evidence to support such a mechanism in the case of small stocks or value stocks.
5Numerous other papers also present evidence consistent with uninformed demand affecting prices.

These include French and Roll (1986), Cooper et al. (2001), Gompers and Metrick (2001), Mitchell et al.

(2002), Goetzmann and Massa (2003), and Lamont and Thaler (2003). Cooper et al. (2001) is particularly

related to the category view in that they show that stocks that recategorized themselves as dot-com

companies in the late 1990s experienced large price increases even when their business model did not

change.
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fundamental values are correlated. In this section, we briefly present reduced-form
models of three alternative friction- or sentiment-based theories of comovement: the
category, habitat, and information diffusion views. The models yield the predictions
that motivate the empirical work in Section 3.
Consider an economy that contains a riskless asset in perfectly elastic supply and

with zero rate of return, and also 2n risky assets in fixed supply. Risky asset i is a
claim to a single liquidating dividend Di;T to be paid at some later time T. This
eventual dividend equals

Di;T ¼ Di;0 þ ei;1 þ � � � þ ei;T ; ð1Þ

where Di;0 and ei;t are announced at time 0 and time t, respectively, and where

et ¼ ðe1;t; . . . ; e2n;tÞ
0
� Nð0;SDÞ; i:i:d: over time: ð2Þ

The price of a share of risky asset i at time t is Pi;t and the return on the asset between
time t � 1 and time t is

DPi;t 	 Pi;t � Pi;t�1: ð3Þ

For simplicity, we refer to the asset’s change in price as its return.
Suppose that, to simplify their decision-making, some investors group the 2n risky

assets into two categories, X and Y, and then allocate funds at the level of these
categories rather than at the individual asset level. In particular, they place assets 1
through n in category X and assets n þ 1 through 2n in category Y. It may be helpful
to think of X and Y as ‘‘old economy’’ and ‘‘new economy’’ stocks, respectively.
Suppose now that these categories are also adopted by noise traders, who channel

funds in and out of the categories depending on their sentiment. A simple
representation for asset returns is then

DPi;t ¼ ei;t þ DuX ;t; i 2 X ; ð4Þ

DPj;t ¼ ej;t þ DuY ;t; j 2 Y ; ð5Þ

where

uX ;t

uY ;t

� �
� N

0

0

� �
;s2u

1 ru

ru 1

� �� �
; i:i:d: over time: ð6Þ

Here, uX ;t can be thought of as time t noise trader sentiment about the securities in
category X. Since the noise traders allocate funds by category, this sentiment level is
the same for all securities in category X. Eq. (4) says that the return on a security in
category X is affected not only by news about cash flows, ei;t, but also by the change
in sentiment about X, DuX ;t: when noise traders become more bullish about old
economy stocks, these stocks go up in price.
Eqs. (4) and (5) can also be thought of as a reduced-form model for the habitat

view of comovement. In this case, X and Y simply have to be reinterpreted as
habitats, not categories: instead of representing groups of assets that some investors
do not distinguish between when allocating funds, they represent groups of assets
that are the sole holdings of some investors. Specifically, we can think of assets 1
through n as U.S. stocks and assets n þ 1 through 2n as U.K. stocks; there are many
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investors in both countries who trade only domestic securities. Under the habitat
interpretation, uX ;t tracks the risk aversion, sentiment, or liquidity needs of investors
who invest only in the securities in X. The return of an asset in habitat X is affected
not only by news about cash flows but also by the change in risk aversion, say, of
these specific investors.
The third variant of friction- or sentiment-based comovement, the information

diffusion view, can be modeled as

DPi;t ¼ ei;t; i 2 X ; ð7Þ

DPj;t ¼ mej;t þ ð1� mÞej;t�1; j 2 Y : ð8Þ

Here, X and Y are groups of stocks that, for some reason, incorporate new
information at different rates. Stocks in X incorporate news announced at time t

immediately. Stocks in Y incorporate only a fraction m of time t news immediately;
the remaining fraction, 1� m, is incorporated in the following period.
For the fund flows of noise traders or investors with preferred habitats to affect

prices, as in Eqs. (4)–(5), or for information to be incorporated into stock prices with
delay, as in Eqs. (7)–(8), arbitrage must be limited in some way, perhaps because
arbitrageurs have short horizons (De Long et al., 1990; Shleifer and Vishny, 1997).
The idea that there are limits to arbitrage has found support in the considerable
empirical literature, cited in the introduction, suggesting that demand unrelated to
news about fundamental value affects security prices.6

To uncover evidence of friction- or sentiment-based comovement, we look for
testable predictions that emerge from our reduced-form models. One set of
predictions describes what happens when a stock moves from one category or
habitat to another, or from a group of stocks that incorporates information slowly to
one that does so quickly. Such reclassification occurs in many ways. For example, if
the market capitalization of a large-cap stock declines sufficiently, it enters the small-
cap stock category. More simply, stocks are regularly added to categories like the
S&P 500 to replace stocks that have been removed due to bankruptcies or mergers.
In the appendix, we show that under quite general conditions, the reduced-form

models (4)–(5) and (7)–(8) yield the following prediction:
Prediction 1. Suppose that risky asset j, previously a member of Y, is reclassified into

X, and that the cash-flow covariance matrix SD is constant over time. Then, for a large

number of risky assets n, the probability limit of the OLS estimate of bj in the

univariate regression

DPj;t ¼ aj þ bjDPX ;t þ vj;t; ð9Þ
6Barberis et al. (2002) show more formally that in an economy where rational arbitrageurs interact

either with category-based noise traders or with investors with preferred habitats, returns have the form

given in Eqs. (4)–(5).
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where

DPX ;t ¼
1

n

X
l2X

DPl;t; ð10Þ

as well as the probability limit of the R2 of this regression, increases after

reclassification.

The intuition is straightforward, whether X and Y are categories, habitats, or
groups of stocks that incorporate information at similar rates. To take the category
view, when asset j enters category X, it is buffeted by noise traders’ flows of funds in
and out of that category. This increases the covariance of its return with the return
on category X, DPX ;t, and hence also its beta loading on that return. For simplicity,
we assume a fixed cash-flow covariance matrix in the statement of the prediction. A
more general version would predict that beta increases more than can be explained
by any change in cash-flow correlations.
A similar intuition lies behind the next prediction which, as we show in the

Appendix, can also be derived from Eqs. (4)–(5) and (7)–(8):

Prediction 2. Suppose that risky asset j, previously a member of Y, is reclassified into

X, and that the cash-flow covariance matrix SD is constant over time. Then, for a large

number of risky assets n, the probability limit of the OLS estimate of bj;X in the

bivariate regression

DPj;t ¼ aj þ bj;XDPX ;t þ bj;YDPY ;t þ vj;t ð11Þ

rises after reclassification, while the probability limit of the OLS estimate of bj;Y falls.

In particular, the pre-reclassification values of the two slope coefficients, b
j;X

and b
j;Y
,

and their post-reclassification values, bj;X and bj;Y , satisfy

b
j;X

¼ 0; b
j;Y

¼ 1

0obj;X o1; 0obj;Yo1; bj;X þ bj;Y ¼ 1:

The intuition for this prediction is again straightforward, whichever interpretation
X and Y are given. Consider again the category view, whose basic prediction is that,
when a stock enters category X, it becomes more sensitive to the category X

sentiment shock DuX ;t. The independent variable in the Prediction 1 regression,
DPX ;t, is not a clean measure of this sentiment shock: as Eq. (4) shows, a substantial
part of its variation comes from news about cash flows. The DPY ;t variable in
regression (11) can be thought of as a control for such news, making the coefficient
on DPX ;t a cleaner measure of sensitivity to DuX ;t. Alternatively, under the
information diffusion view, regression (11) is a cleaner test than regression (9) of
whether, after inclusion, stock j becomes more sensitive to that component of
market-wide news that is incorporated more quickly into X than into Y. Note that
while bj;X rises after reclassification, it rises by less than one, and that while bj;Y falls,
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it falls by less than one. Moreover, the rise in bj;X has the same absolute magnitude
as the fall in bj;Y .
Later on, when we try to distinguish not only between the fundamentals-based and

the friction- or sentiment-based theories of comovement, but also between the three
specific variants of friction- or sentiment-based comovement, we make use of a
prediction of the information diffusion view not shared by the category and habitat
views, namely that there will be positive cross-autocorrelation between S&P and
non-S&P returns. Under the information diffusion view, news about aggregate
cash flows is reflected in S&P stocks today, but only with some delay in non-S&P
stocks.
The three friction- or sentiment-based views we consider depend on the existence

of noise traders who allocate funds by category, on the existence of distinct investor
habitats, or on heterogeneous rates of information diffusion. If these features are not
present, Predictions 1 and 2 will not hold. In this case,

DPi;t ¼ ei;t; i 2 X ð12Þ

DPj;t ¼ ej;t; j 2 Y ; ð13Þ

and comovement is entirely fundamentals-based, in that the correlation of returns is
completely determined by the correlation of cash-flow news. If, as assumed in the
predictions, the cash-flow covariance matrix SD remains constant, the correlation
structure of returns also remains constant. In other words, bj and R2 in Prediction 1
and bj;X and bj;Y in Prediction 2 remain unchanged after reclassification.
3. Empirical tests

To test Predictions 1 and 2, we need a group of securities with three characteristics.
First, the group must be a natural category or preferred habitat for many
investors, or else a set of stocks that incorporate information more quickly
than do other stocks. Second, since the predictions concern reclassification,
there must be clear and identifiable changes in group membership. Finally, to
control for fundamentals-based comovement, a security’s inclusion or removal
from the group should not change investors’ perception of the correlation of the
security’s fundamental value with the fundamental values of other securities in the
group.
Stocks in the S&P 500 index satisfy our three requirements. The vast popularity of

S&P-linked investment products, such as S&P mutual funds, futures, and options,
suggests that the index is a preferred habitat for some investors and a natural
category for many more. Even if category- or habitat-based investors trade S&P
futures and options rather than the underlying stocks, any influence they have on the
prices of these futures and options is quickly transmitted to the cash market by index
arbitrageurs. Moreover, the high liquidity of S&P stocks and the fact that they are
traded by sophisticated financial institutions make it likely that they will be
particularly quick to incorporate market-wide cash-flow news.
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The S&P 500 also has the second characteristic we require: there is clear and
identifiable turnover in its membership. In a typical year there are about 30 changes;
our full sample, which we describe in Section 3.1, contains 455 additions and 76
deletions.
Finally, the act of adding a stock to the S&P 500 should not change investors’

perceptions of the covariance of the included stock’s fundamental value with other
stocks’ fundamental values. The stated goal of Standard & Poor’s is to make the
index representative of the U.S. economy, not to signal a view about future cash
flows.7 Deletions from the index are another matter. Stocks are usually removed
from the index because a firm is merging, being taken over, or nearing bankruptcy.
In these situations cash-flow characteristics are changing, so we exclude these cases
from our deletion sample.
In Sections 3.2 and 3.3, we test Predictions 1 and 2 for the case in which X is

the S&P 500 and Y is stocks outside that index. Our null hypothesis is that
return comovement is entirely a function of comovement in news about
fundamentals, so that the betas and R2s in regressions (9) and (11) do not

change after inclusion or deletion. The alternative hypothesis is that return
comovement is delinked from fundamentals as described by the category, habitat,
and information diffusion views, so that the betas and R2s change as stated in the
predictions. In Sections 3.4 through 3.6, we examine the robustness of our findings.
In Section 3.7, we attempt to decompose any deviations from fundamentals-based
comovement that we uncover across the three specific friction- or sentiment-based
views.
3.1. Data

We study S&P 500 index inclusions between September 22, 1976 and December
31, 2000 and deletions between January 1, 1979 and December 31, 2000. Standard &
Poor’s did not record announcement dates of index changes before September 1976
and we are unable to obtain data on deletions before 1979.
There are 590 inclusion events in the inclusion sample period and 565 deletions in

the deletion sample period. Inclusion events are excluded if the new firm is a spin-off
or a restructured version of a firm already in the index, if the firm is engaged in a
merger or takeover around the inclusion event, or if the event occurs so close to the
end of the sample that the data required for estimating post-event betas are not
available. This last condition binds only in the case of monthly data, for which we
need a longer post-event sample—in this case, events after December 31, 1998 are
discarded. The final sample covers 455 inclusions in the case of daily and weekly
data, and 324 in the case of monthly data.
7Denis et al. (2003) find that index additions coincide with increases in earnings. These results would not

seem to explain the growth in the S&P inclusion effect over time, nor the large price effects observed by

Kaul et al. (2000) and Greenwood (2004) for completely mechanical reweightings of stocks that are already

members of indices. Perhaps more importantly, even if inclusions signal something about the level of

future cash flows, there is no evidence that they signal anything about cash-flow covariances.
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Deletion events are excluded if the firm is involved in a merger, takeover, or
bankruptcy proceeding, or if required return data are not available. These
circumstances, determined in part by searching the NEXIS database, exclude the
vast majority of deletions. The ones that remain are largely cases in which stocks
were deleted because the index became too heavily weighted in the industry they
belonged to. The final sample contains 76 deletions in the case of daily and weekly
data; lack of a long enough post-event sample for events after December 31, 1998
reduces this to just 45 deletions in the case of monthly data.8

3.2. Univariate regressions

Prediction 1 holds that under the three friction- or sentiment-based views we
consider, stocks added to (deleted from) the S&P 500 will comove more (less) with
the other members of the index after the addition (deletion) event.
To test this, for each inclusion and deletion we estimate the univariate regression

Rj;t ¼ aj þ bjRSP500;t þ vj;t ð14Þ

separately for the period before the event and the period after the event, and record the
change in the slope coefficient, Dbj, and the change in the R2, DR2

j . Rj;t is the return on
the event stock between time t � 1 and t, while RSP500;t is the contemporaneous return
on the S&P 500 index, obtained from the Center for Research in Security Prices
(CRSP) Index on the S&P Universe file. To avoid spurious effects, we remove the
contribution of the event stock from the right-hand side variable. For inclusion events,
this means that there are 500 stocks in the right-hand side variable before inclusion,
and 499 afterward. The reverse applies for deletion events.
We run these regressions for three data frequencies: daily, weekly, and monthly.

With daily and weekly data, the pre-event regression is run over the 12-month period
ending the month before the month of the inclusion announcement, while the post-
event regression is run over the 12-month period starting the month after the month
of the inclusion implementation. With monthly data, we extend the estimation period
to 36 months.
Up until October 1989, inclusions and deletions were made effective on the day of

their announcement. Since then, the changes have been announced a week in
advance of their implementation. It is not clear whether to view the to-be-added
stock as being in the index or not in the index during the time between
announcement and implementation; significant price effects have been documented
on both days (Lynch and Mendenhall, 1997). To avoid these issues entirely, we do
not use data from the month of the announcement or of the implementation (these
are usually the same month).
Table 1 reports the change in slope coefficient, averaged across all events in the

sample, Db, as well as the average change in R2, DR2. It confirms that stocks added
to the S&P 500 experience a strongly significant increase in daily and weekly betas
and R2s. In the full sample of additions, the mean increase in daily beta is 0.151 and
8The S&P 500 inclusion and deletion data are available on request.
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Table 1

Changes in comovement of stocks added to and deleted from the S&P 500 index

Changes in the slope and the fit of regressions of returns of stocks added to and deleted from the S&P 500

index on returns of the S&P 500 index and the non-S&P 500 rest of the market. The sample includes stocks

added to and deleted from the S&P 500 between 1976 and 2000 that were not involved in mergers or

related events (described in the text) and that have sufficient return data on CRSP. For each event stock j,

the univariate model

Rj;t ¼ aj þ bjRSP500;t þ uj;t

and the bivariate model

Rj;t ¼ aj þ bj;SP500RSP500;t þ bj;nonSP500RnonSP500;t þ uj;t

are separately estimated for the pre- and post-event period. Returns on the S&P 500 ðRSP500Þ are from the

CRSP Index on the S&P 500 Universe file. Returns on a capitalization-weighted index of the non-S&P 500

stocks ðRnonSP500Þ in the NYSE, AMEX, and Nasdaq are inferred from the identity

RVWCRSP;t ¼
CAPCRSP;t�1 � CAPSP500;t�1

CAPCRSP;t�1

� �
RnonSP500;t þ

CAPSP500;t�1

CAPCRSP;t�1

� �
RSP500;t:

Total capitalization of the S&P 500 ðCAPSP500Þ is from the CRSP Index on the S&P 500 Universe file.

Returns on the value-weighted CRSP NYSE, AMEX, and Nasdaq index ðRVWCRSPÞ and total

capitalization ðCAPCRSPÞ are from the CRSP Stock Index file. Returns from October 1987 are excluded.

The mechanical influence of the added or deleted stock is removed from the independent variables as

appropriate. For the univariate regression model, we examine the mean change in slope across the event

date Db, and the mean change in fit DR2. For the bivariate model, we examine the mean changes in the

slopes, DbSP500 and DbnonSP500. The pre-event and post-event estimation periods are ½�12;�1� and

½þ1;þ12� months for daily and weekly returns and ½�36;�1� and [+1,+36] months for monthly returns.

Panels A, B, and C show results for daily, weekly, and monthly returns, respectively. Standard errors are

adjusted using simulations to account for cross-correlation, and are reported in parentheses.

Sample N Univariate Bivariate

Db (s.e.) DR2 (s.e.) DbSP500 (s.e.) DbnonSP500 (s.e.)

Panel A: daily returns

Additions 1976–2000 455 0.151*** 0.049*** 0.326*** �0.319***

(0.021) (0.005) (0.027) (0.033)

1976–1987 196 0.067*** 0.038*** 0.286*** �0.301***

(0.023) (0.008) (0.041) (0.050)

1988–2000 259 0.214*** 0.058*** 0.357*** �0.332***

(0.032) (0.007) (0.036) (0.045)

Deletions 1979–2000 76 �0.087* �0.010 �0.511*** 0.550***

(0.049) (0.007) (0.111) (0.122)

Panel B: weekly returns

Additions 1976–2000 455 0.110*** 0.033*** 0.174*** �0.119**

(0.029) (0.008) (0.053) (0.056)

1976–1987 196 0.025 0.027** 0.137 �0.125

(0.036) (0.012) (0.094) (0.093)

1988–2000 259 0.173*** 0.037*** 0.202*** �0.115*

(0.043) (0.010) (0.061) (0.069)

N. Barberis et al. / Journal of Financial Economics 75 (2005) 283–317294
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Table 1 (continued )

Sample N Univariate Bivariate

Db (s.e.) DR2 (s.e.) DbSP500 (s.e.) DbnonSP500 (s.e.)

Deletions 1979–2000 76 �0.129 �0.015 �0.505*** 0.412**

(0.105) (0.010) (0.161) (0.169)

Panel C: monthly returns

Additions 1976–1998 324 0.042 0.004 0.317*** �0.252***

(0.041) (0.014) (0.077) (0.072)

1976–1987 172 �0.010 0.006 0.267** �0.167*

(0.060) (0.021) (0.127) (0.116)

1988–1998 152 0.101* 0.000 0.375*** �0.348***

(0.066) (0.021) (0.113) (0.107)

Deletions 1979–1998 45 0.006 0.001 0.303 �0.256

(0.100) (0.022) (0.240) (0.252)

, , and  denote significant differences from zero at the 1%, 5%, and 10% levels in one-sided tests,

respectively.
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in weekly data, 0.110. At the monthly frequency, however, neither the 0.042 increase
in beta nor the slight increase in R2 are significant at conventional levels. Other than
a weakly significant change in daily beta, we do not detect significant drops in beta or
R2 around deletion events.
Our univariate regression results are similar to those of Vijh (1994), who studies

additions to the S&P during 1975–1989. Using daily and weekly data, Vijh computes
changes in individual stocks’ betas with the value-weighted return of all NYSE and
AMEX stocks. He finds average increases in market betas of 0.08 and 0.037 at the
daily and weekly frequencies, respectively. These numbers are comparable in
magnitude to the 0.067 and 0.025 increases in S&P betas that we report for our
1976–1987 subsample.
Our evidence shows that in the more recent data now available, the results are

considerably stronger than those in Vijh’s 1975–1989 sample alone. Table 1 shows that
at daily and weekly frequencies, the increases in beta and R2 across inclusion events
are quantitatively larger in the later subsample. At the daily frequency, for example,
the increase in S&P beta is 0.067 in the earlier subsample, but rises to 0.214 in the later
one. The difference is highly statistically significant. Given the growing importance of
the S&P 500 as an investment class, the fact that the effect is not only present but
larger in more recent data is especially supportive of the category and habitat views.
This evidence can also be consistent with the information diffusion view if, because of
changes in transaction costs or ownership, S&P stocks now incorporate information
even more quickly, relative to non-S&P stocks, than they did before.
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The three friction- or sentiment-based views also predict that the shifts in beta
after inclusion should become weaker at sufficiently low frequencies. Since we expect
noise trader sentiment to revert eventually, and even slowly diffusing information to
be incorporated eventually, lower-frequency returns, and therefore also lower-
frequency patterns of comovement, will be more closely tied to fundamentals. The
shifts in beta after inclusion need not, however, decline monotonically with the
horizon over which returns are measured. Under the category view, for example, if
sentiment shocks are positively autocorrelated at the first few lags and negatively
autocorrelated only thereafter, the shifts in beta should first increase with the return
horizon and only later, decline.9

The univariate regressions in Table 1 conform to the simplest prediction of the
three friction- or sentiment-based views: as we move from daily to monthly results,
the shifts in beta decline in both economic and statistical significance. This suggests
either that any noise-trader sentiment mean-reverts within a matter of days, or that
information, while not immediately reflected in prices, is nonetheless incorporated
quite quickly (or both). In Section 3.7, we will be able to say more as to which
possibility is most likely.
The standard errors deserve comment. If two events are close together in calendar

time, there may be substantial overlap in the time periods covered by the regressions
associated with each event. This means that the disturbances vj;t may be correlated
across events, which in turn implies that the fDbjgj¼1;...;N may not be independent but
rather autocorrelated at several lags.
We use simulation methods to compute standard errors that account for this

dependence. A full description of our methodology can be found in the Appendix. In
brief, we generate a simulated data set, consisting of an S&P return and returns on
included stocks, and set the cross-sectional correlation of the disturbance terms to
whatever value generates a first-order autocorrelation in the Dbjs equal to that
observed in our results. We then compute Db in this sample, under the null that betas
do not change after inclusion. By generating many such data sets, we obtain the
distribution of Db under the null, and hence, appropriate standard errors.10

Table 1 reports changes in S&P beta across the event date. For the univariate
regressions, and for the full sample of additions, the absolute levels of S&P
beta, after addition, in daily, weekly, and monthly data, are 1.13, 1.21, and 1.26.
Since the average S&P beta of all 500 stocks in the index is one, this means that the
S&P betas of included stocks must eventually decline.
9In the model of Eqs. (4)–(5), the shifts in beta after inclusion do decline monotonically with the return

horizon: the simplifying assumption of i.i.d. sentiment means that changes in sentiment are negatively

autocorrelated even at the first lag.
10At least for daily and weekly frequencies, cross-correlation of disturbances does not affect the

standard errors very much. The reason is that such cross-correlation produces positive autocorrelation in

the Dbjs at the first few lags but negative autocorrelation at higher lags. As a result, the variance of Db is

only slightly higher than if the disturbances were uncorrelated.
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3.3. Bivariate regressions

Our primary empirical contribution is to introduce a bivariate regression test to
distinguish the fundamentals-based theory of comovement from the friction- or
sentiment-based theories. This test, presented in Prediction 2, holds that under the
friction- or sentiment-based views, controlling for the return of non-S&P stocks, a
stock that is added to (removed from) the S&P will experience a large increase
(decrease) in its loading on the S&P return. To test this, for each inclusion and
deletion we run the bivariate regression

Rj;t ¼ aj þ bj;SP500RSP500;t þ bj;nonSP500RnonSP500;t þ vj;t ð15Þ

for the period before the event and the period after the event, and record the changes
in the S&P and non-S&P betas, Dbj;SP500 and Dbj;nonSP500. RnonSP500;t is the return on
non-S&P stocks in the NYSE, AMEX, and Nasdaq universe between time t � 1 and
time t. This is inferred from index return and capitalization data using the identity
that the capitalization-weighted average return of S&P stocks and of non-S&P
stocks equals the overall CRSP value-weighted return on NYSE, AMEX, and
Nasdaq stocks. We run the regressions at daily, weekly, and monthly frequencies and
use the same 12- and 36-month estimation windows as for the univariate tests.
Table 1 reports the change in S&P beta, averaged across all events in the sample,

DbSP500, as well as the average change in non-S&P beta, DbnonSP500. These bivariate
regression results are statistically stronger than the univariate regression results. At
all three data frequencies, S&P 500 inclusion is associated with a substantial and
significant increase in beta with the S&P and a substantial and significant decrease in
beta with the rest of the market. For example, daily beta with the S&P 500 goes up
by an average of 0.326 and average daily beta with other stocks drops by 0.319.
Large and significant results also obtain for deletion events at the daily and weekly
frequencies. Moreover, the table shows that at all three frequencies, the changes in
S&P betas are quantitatively larger in the later subsample, although the differences
relative to the earlier subsample are not statistically significant.
Not only are the shifts in betas around inclusion and deletion events statistically

significant, but by one metric at least, they are economically significant as well. One
way of judging this is the following. For fixed values of the right-hand side variables
in regression (15), we can generate predicted values of the left-hand side variable,
first using betas estimated before inclusion and then betas estimated after inclusion.
In results available on request, we find that the two sets of predicted values are quite
different—the standard deviation of their difference is relatively large—providing
one demonstration that the shift in betas is economically meaningful.
Unlike the univariate regression results, the bivariate regressions do not display

the other pattern predicted by the three friction- or sentiment-based views of
comovement, namely that the results should be stronger at higher frequencies. One
possible explanation is discussed in Section 3.6 below. There, we show that when we
control more carefully for fundamentals-based comovement, the results are closer to
the predicted pattern. In brief, we find that in the bivariate tests, fundamentals-based
comovement makes up a larger fraction of the monthly beta shifts than of the daily
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beta shifts. Once this fundamentals-based component is taken out, the residual
effect, which we attribute to friction- or sentiment-based comovement, is indeed
smaller at lower frequencies.
A noteworthy feature of the bivariate regression (15) is collinearity. The usual

standard errors do, of course, take the correlation of the explanatory variables into
account—no special correction is required. Collinearity does mean that the standard
errors on the slope coefficients in the bivariate regressions are likely to be higher than
on the slope coefficient in the univariate regressions. Nonetheless, Table 1 shows that
despite the larger standard errors, the bivariate regressions reject the null more
strongly than do the univariate tests.
Collinearity is, however, at the root of another feature of the bivariate regression

results, namely that the changes in S&P and non-S&P betas are of similar but opposite
magnitude. To see the link, recall that when two right-hand side variables are highly
correlated, the sum of their respective slope coefficients is estimated much more accurately
than either of the individual coefficients (Goldberger, 1991, p. 251).11 In the context of
regression (15), the sum of bj;SP500 and bj;nonSP500 is estimated more precisely than either
individual slope, which immediately implies that the sum of DbSP500 and DbnonSP500 is also
estimated more precisely than either of the two component pieces. However, the sum of
DbSP500 and DbnonSP500 is also approximately the average change in overall market beta,
which we know from Vijh (1994) to be close to zero. It is therefore no surprise that the
changes in S&P and non-S&P betas are of similar but opposite magnitudes.
The fact that average changes in S&P and non-S&P betas are roughly equal and

opposite has little relevance for our test of the friction- or sentiment-based views of
comovement: this pattern is to be expected under the null of fundamentals-based
comovement and under the friction- or sentiment-based alternatives. The key
distinction is that under the null, changes in S&P and non-S&P betas should not be
statistically different from zero, while under the alternatives, S&P betas should exhibit
a significant increase after inclusion, and non-S&P betas a significant decrease. The
bivariate regression results in Table 1 provide clear support for the alternatives.

3.4. Calendar time tests

The methodology used in Table 1 is an ‘‘event time’’ approach. An alternative
technique, the ‘‘calendar time’’ approach, is often used to address a common statistical
problem in event studies, namely correlation of returns across events. As described in
Section 3.2, we use simulations to deal with this problem. Calendar time tests offer a
second way of checking that our results are robust to this statistical consideration.
The calendar time approach requires the construction of two portfolios: a ‘‘pre-

event’’ portfolio whose return at time t, Rpre;t, is the equal-weighted average return at
time t of all stocks that will be added to the index within some window after time t;
and a ‘‘post-event’’ portfolio whose return at time t, Rpost;t, is the equal-weighted
average return at time t of all stocks that have been added to the index within some
11Mathematically, this is because collinearity induces negative correlation between the two slope

estimates, lowering the variance of their sum.
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window preceding time t. For daily and weekly data, we take the window to be a
year, and extend it to three years for monthly data.
The calendar time test of Prediction 1 calls for running two regressions,

Rpre;t ¼ apre þ bpreRSP500;t þ vpre;t ð16Þ

and

Rpost;t ¼ apost þ bpostRSP500;t þ vpost;t ð17Þ

and checking whether bpost4bpre.
Similarly, the calendar time test of Prediction 2 calls for running the two

regressions

Rpre;t ¼ apre þ bpre;SP500RSP500;t þ bpre;nonSP500RnonSP500;t þ vpre;t ð18Þ

and

Rpost;t ¼ apost þ bpost;SP500RSP500;t þ bpost;nonSP500RnonSP500;t þ vpost;t; ð19Þ

and checking whether bpost;SP5004bpre;SP500 and bpost;nonSP500obpre;nonSP500.
Table 2 reports the changes in slope coefficients. The results are again supportive

of the friction- or sentiment-based views. In the univariate regressions, significant
increases in beta occur at the daily and weekly frequencies. In the bivariate
regressions, the results for inclusion events are strongly significant at all three data
frequencies, although the results for deletion events are weaker than in the event time
tests, turning up no statistically significant effects.

3.5. Alternative explanations: characteristic and industry effects

We now consider some alternative explanations for the results in Table 1. One
possibility is that stocks in the S&P 500 index differ from other stocks in terms of
some characteristic, and that the stocks Standard & Poor’s chooses to include are
those increasingly demonstrating that characteristic. If the characteristic is also
associated with a cash-flow factor, this may explain our results.
The most obvious such characteristic is size. Stocks in the S&P have considerably

higher market capitalizations than stocks outside the index, and the stocks Standard &
Poor’s includes in the index have often been growing in size prior to inclusion. Moreover,
size is known to be associated with a cash-flow factor: there is a common component to
news about the earnings of large-cap stocks (Fama and French, 1995). Our finding that
S&P betas increase around inclusion may then arise because included stocks are growing
in size around inclusion and are therefore increasingly loading on the large-stock cash-
flow factor. More generally, this is a story in which inclusion in the S&P coincides with a
change in the cash-flow covariance matrix, even if it does not cause it.
A related concern is based on industry effects. Suppose that some industry

becomes increasingly dominant in the economy. This increases the fraction of the
value of the S&P made up by stocks in this industry. Moreover, to keep their index
representative, Standard & Poor’s may start drawing an increasing number of new
inclusions from this industry. Since S&P beta is computed using the value-weighted
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Table 2

Calendar time estimates of changes in comovement of stocks added to and deleted from the S&P 500 index

Differences between the comovement characteristics of two portfolios of stocks: those about to be added

to the S&P 500 and those just recently added. The sample includes stocks added to and deleted from the

S&P 500 between 1976 and 2000 that were not involved in mergers or related events (described in the text)

and that have sufficient return data on CRSP. A capitalization-weighted return index of non-S&P 500

stocks ðRnonSP500Þ in the NYSE, AMEX, and Nasdaq is inferred from the identity described in Table 1.

Returns from October 1987 are excluded. In daily data, for example, for each day we form an equal-

weighted portfolio of stocks that will be added to the S&P 500 within the next year and a portfolio of

stocks that were added within the past year. We then run separate univariate regressions for each portfolio

on the S&P 500 index,

Rpre;t ¼ apre þ bpreRSP500;t þ upre;t

and

Rpost;t ¼ apost þ bpostRSP500;t þ upost;t;

denoting the difference in slope between the ‘‘post’’ and ‘‘pre’’ regressions as Db. We also run separate

bivariate regressions for each portfolio,

Rpre;t ¼ apre þ bpre;SP500RSP500;t þ bpre;nonSP500RnonSP500;t þ upre;t

and

Rpost;t ¼ apost þ bpost;SP500RSP500;t þ bpost;nonSP500RnonSP500;t þ upost;t;

denoting the difference in the slopes as DbSP500 and DbnonSP500, respectively. The mechanical influence of
the ‘‘pre’’ and ‘‘post’’ portfolio stocks is removed, as appropriate, from the independent variables. In daily

and weekly data, the ‘‘pre’’ portfolio includes stocks that will be added within one year and the ‘‘post’’

portfolio includes stocks that were added in the past year. In monthly data, these windows are extended to

three years. We require at least ten stocks in each portfolio in order for that observation (day, week, or

month) to be included in the regressions. Asymptotic standard errors are reported in parentheses.

Sample T Univariate Bivariate

Db (s.e.) DbSP500 (s.e.) DbnonSP500 (s.e.)

Panel A: daily returns

Additions 1976–2000 4147 0.123*** 0.297*** �0.262***

(0.013) (0.020) (0.022)

1976–1987 1873 0.116*** 0.326*** �0.329***

(0.019) (0.035) (0.044)

1988–2000 2274 0.129*** 0.298*** �0.247***

(0.017) (0.026) (0.026)

Deletions 1979–2000 151 0.058 0.164 �0.080

(0.107) (0.190) (0.117)

Panel B: weekly returns

Additions 1976–2000 856 0.045* 0.167*** �0.154***

(0.026) (0.046) (0.043)

1976–1987 387 0.041 �0.014 0.051

(0.039) (0.094) (0.099)

1988–2000 469 0.049 0.219*** �0.210***

(0.036) (0.054) (0.048)

N. Barberis et al. / Journal of Financial Economics 75 (2005) 283–317300
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Table 2 (continued )

Sample T Univariate Bivariate

Db (s.e.) DbSP500 (s.e.) DbnonSP500 (s.e.)

Deletions 1979–2000 29 �0.082 �0.162 0.039

(0.193) (0.537) (0.288)

Panel C: monthly returns

Additions 1976–1998 282 0.018 0.319*** �0.320***

(0.042) (0.073) (0.061)

1976–1987 127 0.019 0.148 �0.143

(0.047) (0.114) (0.099)

1988–1998 155 0.016 0.388*** �0.406***

(0.065) (0.092) (0.075)

Deletions 1979–1998 116 �0.123 �0.255* 0.132

(0.105) (0.166) (0.132)

, , and  denote statistical significance at the 1%, 5%, and 10% levels in one-sided tests, respectively.

N. Barberis et al. / Journal of Financial Economics 75 (2005) 283–317 301
S&P return, this simultaneity can also lead to effects like those we observe: if Yahoo
is included in the S&P at precisely the time that other technology stocks in the index
are growing in value—as indeed it was, having been added in December 1999—it
may covary more with the S&P after inclusion than before.
We address both these competing explanations with a matching exercise. For each

event stock included in the S&P during our sample period, we search for a
‘‘matching’’ stock, drawn from the same industry as the event stock and in the same
size decile both at the time of inclusion and 12 months before inclusion, but which is
not included in the index. Since the matching stock matches the event stock on
industry and on recent growth in market capitalization, it is arguably as good a
candidate for inclusion as the event stock itself, but simply happens not to be
included. If the matching stocks do not demonstrate the same increase (decrease) in
S&P (non-S&P) beta as the event stocks, it strengthens the case that the results in
Table 1 are due to friction- or sentiment-based comovement, rather than to
characteristic or industry effects. In the case of deleted stocks, the matching stock is a
stock in the S&P that matches the deleted stock on industry and recent change in
market capitalization, but which is not removed from the index.12
12At the monthly frequency, in order to match the window over which the betas are computed, we look

for matching stocks that match the event stock on size both at inclusion and 36 months before inclusion.

At all frequencies, we initially try to match by SIC4 industry code. If no match can be found, we allow the

matching stock to be in the same SIC3 industry class, then to be within one size decile at inclusion, then to
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Fig. 1 and Table 3 contain the results of the matching exercise. Panels A, B, and C
of the figure present results for daily, weekly, and monthly data, respectively. Within
each panel, the top two graphs present results for the event firms, while the bottom
two correspond to the matching firms. Also, within each panel, the graphs on the left
present results for the first half of our sample, while those on the right correspond to
the second half.
The graphs use rolling regressions to show how S&P and non-S&P betas change in

event time. Consider the top left graph in Panel A. The solid line shows the mean
daily S&P beta and the dashed line shows the mean daily non-S&P beta, re-estimated
each month using the prior 12 months of daily data. Coefficients plotted to the left of
the left vertical line therefore use only pre-event returns, while coefficients plotted to
the right of the right vertical line use only post-event returns. Coefficients in between
use both pre- and post-event data. To be clear, the steady change in estimated betas
between the two vertical lines should not be interpreted as a steady change in true
betas. Rather, it arises from mixing data from the pre- and post-event regimes.13

Fig. 1 indicates that whichever frequency we look at, the matching stocks exhibit
much smaller shifts in betas than do the event stocks. Table 3, which reports the
changes in betas and R2s in univariate and bivariate regressions for event stocks
relative to the analogous changes for matching stocks, confirms this impression. At
the daily and weekly frequencies, the changes in betas and R2s in univariate
regressions and in S&P and non-S&P betas in bivariate regressions remain strongly
significant across inclusion events, even net of the changes for matching stocks. At
the monthly frequency, the results are weaker than those in Table 1, but are still
highly significant in the second subsample.14

In Section 3.3, we noted another prediction of the three friction- or sentiment-
based views, namely that the beta shifts around inclusion should decline in
significance at lower frequencies. Table 3 shows that, once we control more carefully
for fundamentals-based comovement in the bivariate regressions, the residual effect,
which is more likely to reflect friction- or sentiment-based comovement, does indeed
decline at lower frequencies. The increase in S&P beta, for example, falls from 0.318
at the daily frequency to 0.173 at the monthly one. In Section 3.7, we will be able to
(footnote continued)

be within one size decile 12 months before inclusion, then to be in the same SIC2 industry class, then to be

within two size deciles at inclusion, then to be within two size deciles 12 months before inclusion, and

finally to be within three size deciles 12 months before inclusion. Events for which no such matches can be

found are not included in the matching exercise samples.
13In terms of these graphs, the beta changes reported in Table 1 are the average beta as of event month

+12, which uses data from months [+1, +12] minus the average beta as of event month �1, which uses

data from months ½�12;�1�. There are fewer data points in the graph ðN ¼ 169Þ than in Table 1 (N ¼ 196

for additions in the first subsample), however, because the graph includes only event firms with available

return data for a full 24 months after inclusion and for which we are able to find matching firms.
14In Table 1, we conduct simulations to correct the standard errors for possible correlation in the

disturbance terms across regressions. This problem affects matching-stock regressions just as much as it

does event-stock regressions, but it does not affect differences in slopes across the two sets of regressions.

The Table 3 standard errors are therefore the usual ones—no simulation-based correction is required.
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1976-1987 additions with matches (N = 169)
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(A) Daily returns (solid = S&P 500 coefficient, dash = non S&P coefficient)

Fig. 1. A. Daily returns (solid ¼ S&P 500 coefficient, dash ¼ non S&P coefficient) B. Weekly returns

(solid ¼ S&P 500 coefficient, dash ¼ non S&P coefficient) C. Monthly returns (solid ¼ S&P 500

coefficient, dash ¼ non S&P coefficient). Changes in comovement of stocks added to the S&P 500 Index

and of stocks with matching characteristics. Plots of the mean slope coefficients in bivariate regressions of

returns of stocks added to the S&P 500, and of stocks with matching characteristics, on returns of the S&P

500 Index and the non-S&P 500 rest of the market. The event sample includes stocks added to the S&P 500

that were not involved in mergers or related events (described in the text), which have complete returns

data over the entire event horizon examined in each figure (�12 to +24 months in daily and weekly

returns data and �36 to +72 months in monthly returns data), that remain in the Index for the full post-

event horizon, and for which suitable matching firms exist that have complete data over the same horizon.

Each stock in the event sample is matched with another stock on industry and growth in market

capitalization over the pre-event estimation period. For each added stock j (and each corresponding

matching stock), the bivariate model

Rj;t ¼ aj þ bj;SP500RSP500;t þ bj;nonSP500RnonSP500;t þ uj;t

is estimated in rolling regressions where sample intervals are ½�12;�1� months for daily and weekly

returns and ½�36;�1� months for monthly returns. Returns on the S&P 500 ðRSP500Þ are from the CRSP

Index on the S&P 500 Universe file. Returns on a capitalization-weighted index of the non-S&P 500 stocks

ðRnonSP500Þ in the NYSE, AMEX, and Nasdaq are inferred from the identity described in Table 1. Returns

from October 1987 are excluded. The mechanical influence of the added stock is removed, as appropriate,

from both independent variables. The means of the event stock coefficients are plotted in event time in the

top half of each panel, and the means of the matching stock coefficients are plotted in the bottom half. The

left vertical line indicates the addition date; coefficients to the left of this line are estimated using only pre-

event data. Coefficients to the right of the right vertical line are estimated using only post-event data. In

between, coefficients are estimated using both pre- and post-event data. Panels A, B, and C show results

for daily, weekly, and monthly returns, respectively.
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1976-1987 additions with matches (N = 169)
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(B) Weekly returns (solid = S&P 500 coefficient, dash = non S&P coefficient)

Fig. 1. (Continued)
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say more about which of the three alternative views is most responsible for this
declining effect.
At the same time, our matching exercise disrupts the declining pattern of betas

seen in the univariate regressions in Table 1. Table 3 shows that the average increase
in beta in the univariate regressions declines from 0.120 to 0.077 as we go from the
daily to the weekly frequency, but then increases to 0.104 at the monthly frequency.
Overall, though, accounting for fundamentals-based comovement appears to
improve the fit of our results with the declining significance of beta shifts predicted
by the friction- or sentiment-based views.

3.6. Alternative explanations: non-trading effects

Standard & Poor’s explicitly selects stocks that are highly liquid and frequently
traded for inclusion in the S&P 500 index. Nevertheless, microstructure research
suggests that our daily frequency results might still have some spurious upward bias
due to non-trading effects (Scholes and Williams, 1977; Dimson, 1979).
To see this, suppose that near the end of the trading day, some positive market-

wide information is announced. Since stocks in the S&P are heavily traded, it is
probable that they will trade again before the end of the day: the S&P return for that
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(C) Monthly returns (solid = S&P 500 coefficient, dash = non S&P coefficient)

Fig. 1. (Continued)
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day, RSP500;t, is therefore likely to reflect the good news. A stock outside the index,
however, typically trades less often, and may not trade again before the end of the
day. As a result, its return for that day, Rj;t, may not reflect the good news. A
regression of Rj;t on RSP500;t then produces an artificially low slope coefficient. Once
the stock is included in the S&P 500, though, non-trading ceases to be a problem and
the slope coefficient in the regression goes up, just as it does in our results.15

Under the non-trading hypothesis, then, the beta increases we observe occur
simply because the typical added stock trades more frequently after inclusion. To see
if our results are indeed due to non-trading, we adopt a test suggested by Vijh (1994).
We split the sample of included stocks into two groups: those whose turnover
decreases after addition and those whose turnover increases. More precisely, for each
stock, we compute the average monthly turnover (share volume divided by shares
outstanding) over the same pre- and post-event windows used to compute betas, and
assign the stock to the first group if its post-event average turnover is lower than its
pre-event average turnover, and to the second group otherwise.
15Even though stocks added to the S&P may not trade as often prior to their inclusion as do stocks

already in the index, they invariably still trade at least once a day. Non-trading cannot therefore plausibly

explain the weekly and monthly results in Table 1.
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Table 3

Changes in comovement of stocks added to and deleted from the S&P 500 index relative to matching firms

Changes in the slope and the fit of regressions of returns of stocks added to and deleted from the S&P 500

Index on returns of the S&P 500 index and the non-S&P 500 rest of the market, relative to changes in the

same parameters for matching stocks. Each stock in the event sample is matched with another stock on

industry and growth in market capitalization over the pre-event estimation period. The event sample

includes stocks added to and deleted from the S&P 500 between 1976 and 2000 that were not involved in

mergers or related events (described in the text), that have sufficient return data on CRSP, and for which a

matching stock could be found. For each event stock j, the univariate model

Rj;t ¼ aj þ bjRSP500;t þ uj;t

and the bivariate model

Rj;t ¼ aj þ bj;SP500RSP500;t þ bj;nonSP500RnonSP500;t þ uj;t

are separately estimated for the pre-event and post-event period, and analogous regressions are run for

each matching stock. Returns on the S&P 500 ðRSP500Þ are from the CRSP Index on the S&P 500 Universe

file. Returns on a capitalization-weighted index of the non-S&P 500 stocks ðRnonSP500Þ in the NYSE,

AMEX, and Nasdaq are inferred from the identity described in Table 1. Returns from October 1987 are

excluded. The mechanical influence of the added or deleted stock is removed from the independent

variables as appropriate. For the univariate regression model, we examine the mean change in slope and fit

across the event date for event stocks minus the corresponding quantities for matching stocks, DDb and

DDR2. For the bivariate model, we examine the mean change in slopes for event stocks minus the

corresponding quantities for matching stocks, DDbSP500 and DDbnonSP500. The pre-event and post-event

estimation periods are ½�12;�1� and [+1,+12] months for daily and weekly returns and ½�36;�1� and
[+1,+36] months for monthly returns. Panels A, B, and C show results for daily, weekly, and monthly

returns, respectively. Asymptotic standard errors are reported in parentheses.

Sample N Univariate Bivariate

DDb (s.e.) DDR2 (s.e.) DDbSP500 (s.e.) DDbnonSP500 (s.e.)

Panel A: daily returns

Additions 1976–2000 435 0.120*** 0.040*** 0.318*** �0.289***

(0.022) (0.006) (0.035) (0.042)

1976–1987 189 0.109*** 0.033*** 0.262*** �0.257***

(0.028) (0.008) (0.051) (0.065)

1988–2000 246 0.129*** 0.046*** 0.361*** �0.313***

(0.032) (0.007) (0.047) (0.055)

Deletions 1979–2000 36 �0.098 �0.012 �0.298** 0.271

(0.081) (0.013) (0.142) (0.193)

Panel B: weekly returns

Additions 1976–2000 434 0.077** 0.028*** 0.208*** �0.146**

(0.037) (0.009) (0.070) (0.070)

1976–1987 188 0.086* 0.026* 0.202* �0.162

(0.047) (0.015) (0.113) (0.114)

1988–2000 246 0.070 0.030*** 0.212** �0.134

(0.055) (0.012) (0.087) (0.088)
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Table 3 (continued )

Sample N Univariate Bivariate

DDb (s.e.) DDR2 (s.e.) DDbSP500 (s.e.) DDbnonSP500 (s.e.)

Deletions 1979–2000 36 �0.013 �0.030 �0.616** 0.771**

(0.157) (0.020) (0.251) (0.285)

Panel C: monthly returns

Additions 1976–1998 300 0.104** 0.011 0.173* �0.090

(0.047) (0.013) (0.103) (0.091)

1976–1987 162 0.054 0.008 0.054 �0.011

(0.060) (0.020) (0.145) (0.125)

1988–1998 138 0.163** 0.015 0.313** �0.183

(0.073) (0.020) (0.144) (0.133)

Deletions 1979–1998 18 0.236 0.057 0.438 �0.133

(0.156) (0.041) (0.315) (0.266)

, , and  denote statistical significance at the 1%, 5%, and 10% levels in one-sided tests, respectively.
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If non-trading is driving our results, we should only see increases in S&P beta after
inclusion for the second group of stocks—those whose turnover increases—while for
the first group, we should see decreases.16 The three friction- or sentiment-based
views of comovement, on the other hand, predict increases in S&P beta for both

groups. Table 4 presents the results. It shows that in both the univariate and
bivariate regressions, there are strongly statistically significant increases in S&P betas
even for stocks whose turnover decreases after inclusion. Non-trading cannot
therefore be the primary driver of our daily frequency results.
The results in Table 4 do, however, suggest some role for non-trading. In the

univariate regressions, the shifts in S&P beta are considerably larger in Panel B,
which is what we would expect if non-trading played some part in our results. In the
bivariate regressions, the ratios of the absolute increase in S&P beta to the absolute
decrease in non-S&P beta are larger in Panel B, which is again what would be
expected in the presence of non-trading. We can think of the quantitative effect of
friction- or sentiment-based comovement on S&P betas, controlling for non-trading,
as some average of the results in Panels A and B—somewhere between 0.083 and
0.194 in the univariate case, and somewhere between 0.313 and 0.350 in the bivariate
case. Clearly, these effects will be strongly statistically significant and economically
substantial.
16Strictly speaking, we should see increases in S&P beta for those included stocks whose turnover moves

closer to the value-weighted turnover of stocks already in the S&P. Since, as Vijh (1994) shows, almost all

included stocks have turnover lower than this value-weighted average, both before and after inclusion, the

prediction is more simply made in terms of an increase in turnover.
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Table 4

Changes in comovement of stocks added to and deleted from the S&P 500 index by change in trading

volume

Changes in the slope and the fit of regressions of returns of stocks added to and deleted from the S&P 500

Index on returns of the S&P 500 index and the non-S&P 500 rest of the market. The sample includes stocks

added to and deleted from the S&P 500 between 1976 and 2000 that were not involved in mergers or

related events (described in the text) and that have sufficient return and trading volume data on CRSP. For

each event stock j, the univariate model

Rj;t ¼ aj þ bjRSP500;t þ uj;t

and the bivariate model

Rj;t ¼ aj þ bj;SP500RSP500;t þ bj;nonSP500RnonSP500;t þ uj;t

are separately estimated for the pre- and post-event period. Returns from October 1987 are excluded. The

mechanical influence of the added or deleted stock is removed from the independent variables as

appropriate. For the univariate regression model, we examine the mean change in slope across the event

date Db, and the mean change in fit DR2. For the bivariate model, we examine the mean changes in the

slopes, DbSP500 and DbnonSP500. The pre- and post-event estimation samples are ½�12;�1� and [+1,+12]

months of daily data. Average pre- and post-event monthly turnover (volume divided by shares

outstanding) are computed over these same intervals and are used to identify the direction in trading

volume. Panel A reports results for stocks whose turnover decreased. Panel B reports results for stocks

whose turnover increased. Standard errors are adjusted using simulations to account for cross-correlation,

and are reported in parentheses.

Sample N Univariate Bivariate

Db DR2 DbSP500 DbnonSP500
(s.e.) (s.e.) (s.e.) (s.e.)

Panel A: turnover decrease

Additions 1976–2000 151 0.083** 0.062*** 0.313*** �0.374***

(0.037) (0.009) (0.048) (0.055)

1976–1987 65 0.054* 0.052*** 0.248*** �0.294***

(0.036) (0.013) (0.073) (0.086)

1988–2000 86 0.105** 0.070*** 0.362*** �0.434***

(0.060) (0.012) (0.063) (0.071)

Panel B: turnover increase

Additions 1976–2000 295 0.194*** 0.045*** 0.350*** �0.307***

(0.025) (0.007) (0.033) (0.042)

1976–1987 122 0.089*** 0.035*** 0.344*** �0.342***

(0.031) (0.010) (0.050) (0.062)

1988–2000 173 0.269*** 0.052*** 0.354*** �0.282***

(0.036) (0.009) (0.044) (0.056)

, , and  denote significant differences from zero at the 1%, 5%, and 10% levels in one-sided tests,

respectively.
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In summary, non-trading takes a small bite out of the daily frequency results in
Table 1. Characteristic and industry effects, on the other hand, reduce the strength of
the monthly frequency results in Table 1, but have little impact on the daily and
weekly findings. Taken together, Tables 3 and 4 show that, even after adjusting for
both non-trading and matching-firm effects, there is still strong residual evidence for
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friction- or sentiment-based comovement. The daily and weekly results remain
strongly significant, as do the monthly results in the second subsample.

3.7. Distinguishing the category, habitat, and information diffusion views

So far, we have argued that a substantial part of the shift in betas around inclusion
is due to friction- or sentiment-based comovement of some kind, but we have not
identified which of the three mechanisms—category, habitat, or information
diffusion—might be playing a more significant role. In this section, we attempt to
shed some light on this.
Using return data alone, it is difficult to distinguish between the category and

habitat views, but it may still be possible to isolate the effect of information
diffusion. The reason is that the information diffusion view makes a prediction not
shared by the category and habitat views, namely that there should be positive cross-
autocorrelation between S&P and non-S&P returns: good news about aggregate
earnings is incorporated into the prices of S&P stocks today, but only with some
delay into the prices of non-S&P stocks.
This suggests that we can identify the effect of information diffusion by including

leading and lagged S&P and non-S&P returns in the univariate and bivariate
regressions (14) and (15), a technique proposed by Dimson (1979). Specifically, for
daily frequency data, we estimate the regressions

Rj;t ¼ aj þ
X5
s¼�5

bðsÞj RSP500;tþs þ vj;t ð20Þ

and

Rj;t ¼ aj þ
X5
s¼�5

bðsÞj;SP500RSP500;tþs þ
X5
s¼�5

bðsÞj;nonSP500RnonSP500;tþs þ vj;t ð21Þ

both before and after each inclusion and deletion event, thereby including five leads
and lags. The changes in the quantities17

X5
s¼�5

wðsÞbðsÞj ;
X5
s¼�5

wðsÞbðsÞj;SP500 and
X5
s¼�5

bwðsÞbðsÞj;nonSP500 ð22Þ

across event dates can be interpreted as the beta shifts that would occur in a world
without any delay in the incorporation of information: in other words, they capture
the component of the results in Table 1 due only to category and habitat effects and
not to information diffusion. If they are closer to zero than the daily beta shifts in
Table 1, it suggests that information diffusion is in part driving our results. If they
are still nonzero, however, it suggests that information diffusion cannot explain the
entire shift in betas, but that category and habitat effects are also at work.
17The wðsÞ, wðsÞ and bwðsÞ variables in these formulas are weights that correct the Dimson (1979)

expressions for autocorrelation in S&P and non-S&P returns. The required weights are derived by Fowler

and Rorke (1983). In our data, they are all close to 1.
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Panel A of Table 5 reports the average changes in the quantities in (22) across
event dates. Comparing these numbers to those in Table 1, we see that information
diffusion accounts for about a third of the economic magnitude of our univariate
results and that even after removing its effects, the residual, attributable to category
and habitat effects, remains strongly significant. It also shows that information
diffusion accounts for a much larger fraction, perhaps two-thirds, of the economic
magnitude of the bivariate regression results. Even though the increase in S&P beta
remains quantitatively large, particularly in the later subsample, the standard errors
are so large that statistical significance drops considerably.18

Panel B shows, for the full sample of inclusions, how the components of the three
quantities in (22) change after inclusion. For example, the row labeled t reports the

changes in wð0Þbð0Þj , wð0Þbð0Þj;SP500, and bwð0Þbð0Þj;nonSP500; the row labeled t � 1 reports the

changes in wð�1Þbð�1Þj , wð�1Þbð�1Þj;SP500, and bwð�1Þbð�1Þj;nonSP500; and so on for the other rows.

These numbers are consistent with information diffusion playing some role in our
results. The loading of the added stock’s return on the previous day’s S&P return
declines after inclusion—wð�1Þbð�1Þj and wð�1Þbð�1Þj;SP500 fall by 0.080 and 0.118,
respectively—consistent with the idea that before inclusion, the stock incorporates
market-wide information a day after the S&P, but as soon as it is included, it does so
the same day. The rise, after inclusion, in the sensitivity of the added stock’s return to
the following day’s non-S&P return can be interpreted the same way.
Panel B shows that the pattern predicted by the information diffusion view—a

drop in the sensitivity, wð�sÞbð�sÞ
j and wð�sÞbð�sÞ

j;SP500, of the added stock’s return to
lagged S&P returns—is barely detectable beyond just a one-day lag in the univariate
regressions and beyond a two-day lag in the bivariate regressions. In other words,
although information does appear to enter non-S&P returns more slowly than S&P
returns, the delay is short. The rapid attenuation of the information diffusion effect
in Panel B means that it can play only a minimal role at lower frequencies.
In our discussion of Table 3, we noted that the shifts in beta across inclusion are

weaker at lower frequencies. This pattern disappears after taking out the effect of
information diffusion: the 0.113 and 0.110 univariate and bivariate shifts in daily

S&P betas, reported in Table 5, are not statistically different from our best estimates
of the univariate and bivariate shifts in monthly S&P beta, reported in Table 3 as
0.104 and 0.173. The frequency effect in Table 3 is therefore probably driven mostly
by information diffusion: if information can take two or three days to be fully
incorporated, there will be a more pronounced change in beta at the daily frequency
than at weekly or monthly frequencies. The residual shift in beta, after controlling
for information diffusion, is relatively stable across frequencies. Since this residual is
most likely attributable to the category and habitat views, it suggests that the noise-
trader sentiment assumed by those mechanisms does not mean-revert quickly, but
rather is quite persistent.
18The component of our results that we attribute to slow information diffusion could also be due to a

closely related mechanism in which it is market-wide sentiment, and not just market-wide cash-flow news,

that is incorporated more quickly into some stocks than into others.
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Table 5

Changes in comovement of stocks added to and deleted from the S&P 500 index: Information diffusion

effects (five leads and lags)

Changes in the slope and the fit of regressions of daily returns of stocks added to and deleted from the S&P

500 index on daily returns of the S&P 500 index and the non-S&P 500 rest of the market, using five leads

and lags in daily returns to adjust beta for information diffusion effects as suggested by Dimson (1979) and

Fowler and Rorke (1983). The sample includes stocks added to and deleted from the S&P 500 between

1976 and 2000 that were not involved in mergers or related events (described in the text) and that have

sufficient return data on CRSP. For each event stock j, the univariate model

Rj;t ¼ aj þ
X5
s¼�5

b sð Þ
j RSP500;tþs þ uj;t

and the bivariate model

Rj;t ¼ aj þ
X5
s¼�5

ðb sð Þ
j;SP500RSP500;tþs þ b sð Þ

j;nonSP500RnonSP500;tþsÞ þ uj;t

are separately estimated for the pre-event and post-event period. Returns on the S&P 500 ðRSP500Þ are from

the CRSP Index on the S&P 500 Universe file. Returns on a capitalization-weighted index of the non-S&P

500 stocks ðRnonSP500Þ in the NYSE, AMEX, and Nasdaq are inferred from the identity described in Table

1. Returns from October 1987 are excluded. The mechanical influence of the added or deleted stock is

removed from the independent variables as appropriate. In Panel A, we report the mean difference

between the pre-event and post-event Dimson beta (defined as the sum of the lag, contemporaneous, and

lead beta coefficients, weighted to account for index autocorrelation as in Fowler and Rorke, 1983). In

Panel B, we report the mean difference between the pre-event and post-event components of the Dimson

beta (again weighted to account for index autocorrelation). Standard errors are adjusted using simulations

to account for cross-correlation, and are reported in parentheses.

Sample N (Panel A) Univariate Bivariate

term (Panel B) Db (s.e) DR2 (s.e) DbSP500 (s.e) DbnonSP500 (s.e.)

Panel A: Dimson beta (5 leads and lags)

Additions 1976–2000 449 0.113*** 0.038*** 0.110 �0.013

(0.046) (0.005) (0.093) (0.078)

1976–1987 190 0.021 0.026*** 0.045 0.001

(0.055) (0.008) (0.116) (0.135)

1988–2000 259 0.180*** 0.046*** 0.158* �0.022

(0.068) (0.007) (0.110) (0.092)

Deletions 1979–2000 76 �0.016 �0.012* �0.627** 0.533**

(0.168) (0.008) (0.354) (0.255)

Panel B: components of Dimson beta (5 leads and lags)

Additions 1976–2000 t � 5 �0.002 �0.025 0.051***

(0.012) (0.021) (0.022)

t � 4 0.038*** 0.059*** �0.039*

(0.013) (0.025) (0.029)

t � 3 0.009 �0.002 0.018

(0.012) (0.025) (0.027)

t � 2 �0.005 �0.043** 0.023

(0.012) (0.023) (0.027)

t � 1 �0.080*** �0.118*** 0.149***

(0.014) (0.025) (0.031)

t 0.150*** 0.310*** �0.310***

(0.021) (0.028) (0.037)
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Table 5 (continued )

Sample N (Panel A) Univariate Bivariate

term (Panel B) Db (s.e) DR2 (s.e) DbSP500 (s.e) DbnonSP500 (s.e.)

t þ 1 �0.006 �0.070*** 0.068**

(0.013) (0.025) (0.031)

t þ 2 0.007 �0.055** 0.056**

(0.010) (0.024) (0.028)

t þ 3 �0.021** �0.036* 0.048**

(0.012) (0.023) (0.026)

t þ 4 0.023** 0.048** �0.025

(0.012) (0.024) (0.026)

t þ 5 0.000 0.043** �0.053**

(0.012) (0.023) (0.023)

, , and  denote significant differences from zero at the 1%, 5%, and 10% levels in one-sided tests,

respectively.
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4. Conclusion

We present two broad theories of return comovement and examine them empirically
using data on additions to the S&P 500. The traditional theory, fundamentals-based
comovement, is derived from frictionless economies with rational investors and
attributes comovement in returns to correlation in news about fundamental value. The
alternative theory argues that, due to market frictions or noise-trader sentiment, return
comovement is delinked from fundamentals. We consider three specific variants of
such ‘‘friction-based’’ or ‘‘sentiment-based’’ comovement, and label them the
category, habitat, and information diffusion views.
In earlier work on S&P inclusions during 1975–1989, Vijh (1994) finds that stocks

added to the index experience a significant increase in beta after inclusion. In this
paper, we first show that by applying a univariate analysis similar to Vijh’s to the
new data now available, we uncover considerably stronger effects. We then show
that in bivariate regressions that also include the return of non-S&P stocks, the rise in
S&P beta is altogether larger than anything in the univariate regressions, that this
last effect is also stronger in more recent data, and that exactly the opposite pattern
holds for stocks deleted from the index. We also find that in both univariate and
bivariate regressions, the effects are somewhat weaker at lower frequencies.
Our findings cannot easily be explained by the fundamentals-based view of

comovement, but fit with the friction- or sentiment-based views. We make some
progress in determining the relative importance of the three specific mechanisms we
propose. Slow diffusion of information, for example, appears to account for a
relatively small part of the beta shifts in the univariate regressions, but for up to two-
thirds of the beta shifts in the daily bivariate regressions. Overall, our evidence adds
to the growing range of phenomena identified by financial economists that reveal the
importance of market frictions and noise-trader sentiment for valuation.
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Appendix A

A.1. Derivation of predictions 1 and 2

For simplicity, we assume that the cash-flow covariance matrix SD takes a specific
form, although the predictions also hold for more general structures. In particular,
we suppose that the cash-flow shock to an asset has three components: a market-
wide cash-flow shock, a group-specific cash-flow shock that affects assets in one
group but not the other, and a completely idiosyncratic cash-flow shock specific to
the asset. Formally, for i 2 X ,

ei;t ¼ cMf M;t þ cSf X ;t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c2

M � c2
SÞ

q
f i;t; ð23Þ

and for j 2 Y ,

ej;t ¼ cMf M;t þ cSf Y ;t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� c2

M � c2
SÞ

q
f j;t; ð24Þ

where f M;t is the market-wide shock, f X ;t and f Y ;t are the group-specific shocks, and
f i;t and f j;t are idiosyncratic shocks; cM and cS are constants that control the relative
importance of the three components. Each shock has unit variance and is orthogonal
to the other shocks.
Consider first the reduced-form model for the category and habitat views, Eqs.

(4)–(5). Suppose that asset n þ 1 is reclassified from Y into X, and that at the same
moment, asset 1 is reclassified from X into Y. Before reclassification,

DPX ;t ¼ eX ;t þ DuX ;t ð25Þ

DPY ;t ¼ eY ;t þ DuY ;t ð26Þ

DPnþ1;t ¼ enþ1;t þ DuY ;t; ð27Þ

where

ek;t ¼
1

n

X
l2k

el;t; k ¼ X ;Y ; ð28Þ

while after reclassification, DPX ;t and DPY ;t are still given by (25) and (26), but now

DPnþ1;t ¼ enþ1;t þ DuX ;t: ð29Þ

Using the standard formula for regression coefficients, we find that as n ! 1, the
probability limit of the OLS estimate of bnþ1 in the regression

DPnþ1;t ¼ anþ1 þ bnþ1DPX ;t þ vnþ1;t ð30Þ

is given by

bnþ1 ¼
c2
M þ 2s2uru

c2
M þ c2

S þ 2s2u
ð31Þ
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before reclassification, and by

bnþ1 ¼
c2
M þ 2s2u

c2
M þ c2

S þ 2s2u
ð32Þ

afterwards, thereby confirming that bnþ1 increases after reclassification as claimed in
Prediction 1. Moreover, since varðDPnþ1;tÞ and varðDPX ;tÞ are unchanged after
reclassification, the increase in bnþ1 also implies an increase in the R2 of regression
(30) after inclusion.
Similarly, we find that as n ! 1, the probability limits of the OLS estimates of

bnþ1;X and bnþ1;Y in the regression

DPnþ1;tþ1 ¼ anþ1 þ bnþ1;XDPX ;tþ1 þ bnþ1;YDPY ;tþ1 þ vnþ1;tþ1 ð33Þ

are given by

bnþ1;X ¼ 0; bnþ1;Y ¼ 1 ð34Þ

before reclassification and by

bnþ1;X ¼
2s2uð1� ruÞ

c2
S þ 2s2uð1� ruÞ

; bnþ1;Y ¼
c2
S

c2
S þ 2s2uð1� ruÞ

ð35Þ

afterwards, thereby confirming Prediction 2.
Now consider the reduced-form model for the information diffusion view, Eqs.

(7)–(8). Suppose that asset n þ 1 is reclassified from Y into X, and that at the same
moment, asset 1 is reclassified from X into Y. Before reclassification,

DPX ;t ¼ eX ;t ð36Þ

DPY ;t ¼ meY ;t þ ð1� mÞeY ;t�1 ð37Þ

DPnþ1;t ¼ menþ1;t þ ð1� mÞenþ1;t�1; ð38Þ

where ek;t is defined in (28), while after reclassification, DPX ;t and DPY ;t are still given
by (36) and (37), but now

DPnþ1;t ¼ enþ1;t: ð39Þ

This implies that as n ! 1, the probability limit of the OLS estimate of bnþ1 in
regression (30) is given by

bnþ1 ¼
mc2

M

c2
M þ c2

S

ð40Þ

before reclassification, and by

bnþ1 ¼
c2
M

c2
M þ c2

S

ð41Þ

afterwards, thereby confirming that bnþ1 increases after reclassification as claimed in
Prediction 1. Moreover, since varðDPnþ1;tÞ and varðDPX ;tÞ are unchanged after
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reclassification, the increase in bnþ1 also implies an increase in the R2 of regression
(30) after inclusion.
Similarly, we find that as n ! 1, the probability limits of the OLS estimates of

bnþ1;X and bnþ1;Y in regression (33) are given by

bnþ1;X ¼ 0; bnþ1;Y ¼ 1 ð42Þ

before reclassification and by

bnþ1;X ¼
ð1� mÞ2c2

Mðc2
M þ c2

SÞ

m2c2
Sð2c

2
M þ c2

SÞ þ ð1� mÞ2ðc2
M þ c2

SÞ
2
; ð43Þ

bnþ1;Y ¼
mc2

Sð2c
2
M þ c2

SÞ

m2c2
Sð2c

2
M þ c2

SÞ þ ð1� mÞ2ðc2
M þ c2

SÞ
2

ð44Þ

afterwards. It is straightforward to check that if momn, where

mn ¼
ðc2

M þ c2
SÞ

2

c2
Sð2c

2
M þ c2

SÞ þ ðc2
M þ c2

SÞ
2
; ð45Þ

then bnþ1;X increases after inclusion, while bnþ1;Y falls. If, moreover, m ¼ mnn, where

mnn ¼
c2
M þ c2

S

3c2
M þ 2c2

S

; ð46Þ

then the increase in bnþ1;X is precisely equal in magnitude to the decrease in bnþ1;Y .
Prediction 2 does not therefore follow as generally from Eqs. (7)–(8) as it does from
Eqs. (4)–(5), but it is nonetheless derivable from both reduced-form models.
A.2. Standard error computations

As discussed in Section 3.2, correlation in the residuals vj;t across different stocks
means that the fDbjgj¼1;...;N are not independent, thereby requiring an adjustment to
the standard error of the test statistic Db that would be obtained assuming
independence. To gauge, at least approximately, how large this correction should be,
we generate a large number of artificial data sets and use them to compare the
distribution of the test statistic in the case where there is correlation in residuals to
the distribution in the case where there is none.
We simulate the artificial data as follows. We generate the S&P and non-S&P

returns from

RSP500;t ¼ RM;t þ wSP500;t ð47Þ

RnonSP500;t ¼ RM;t þ wnonSP500;t; ð48Þ
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where

RM;t � Nð0;s2MÞ ð49Þ

wSP500;t � Nð0;s2SÞ ð50Þ

wnonSP500;t � Nð0;s2SÞ; ð51Þ

with all three variables assumed i.i.d. over time and independent of all other
variables. We generate the included stock’s return from

Rj;t ¼ RnonSP500;t þ RF ;t þ wj;t; ð52Þ

where

RF ;t � Nð0;s2F Þ ð53Þ

wj;t � Nð0;s2 � s2M � s2S � s2F Þ; ð54Þ

with both variables assumed i.i.d. over time and independent of all other variables.
RF ;t is a common factor in the returns of included stocks that leads to correlation in
the disturbances vj;t across regressions. The variance of wj;t in (54) ensures that the
overall variance of the included stock’s return in (52) is given by s2.
For each data frequency, we set sM to match the standard deviation of the market

return; sS to generate a correlation between RSP500;t and RnonSP500;t that matches the
empirical value; and s to match the typical standard deviation of an individual stock.
The one parameter that remains is sF , and we set it at whatever value generates a
first-order autocorrelation in the fDbjgj¼1;...;N equal to that in the actual data.
With parameter values assigned, we now generate many artificial data sets. Each

data set consists of an S&P return and a non-S&P return spanning the entire length
of the sample and, taking the case of daily data, return data for 455 included stocks
for the two years around their respective event dates. The spacing of event dates in
the artificial data matches the spacing in the actual data. With a large number of
artificial data sets in hand, we can construct the distribution of the test statistic Db
for the case where the fDbjgj¼1;...;N are not independent. We then compare this to the
distribution of the test statistic for the case of sF ¼ 0, in which the fDbjgj¼1;...;N are
uncorrelated. Finally, we inflate the standard errors in the tables by the implied
correction factor.
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