Abstract

This paper outlines an algorithm for concording U.S. ten-digit Harmonized System export and import codes over time; describes the concordances we construct for 1989 to 2004; and provides Stata code that can be used to construct similar concordances for arbitrary beginning and ending years from 1989 to 2007.

JEL classification: F1
1. Introduction

This paper serves three purposes. First, it outlines an algorithm for concording ten-digit U.S. Harmonized System (HS) product codes over time. Second, it describes how this algorithm can be used to construct an export- or import-code concordance for any arbitrary beginning and ending years from 1989 to 2007. Finally, it summarizes the 1989 to 2004 HS concordances used in Bernard, Jensen, Redding and Schott’s (2009) analysis of the margins of U.S. trade and provides statistics illustrating the prevalence of changes in HS codes during that time interval. We note that though the official names of U.S. export and import product codes are “Schedule B” and “Harmonized Tariff Schedule” codes, respectively, we refer to both generically as HS codes in this paper.

Section 2 provides a brief description of HS codes. Section 3 describes the data used to construct our concordance. Section 4 outlines our algorithm. Section 5 summarizes the 1989 to 2004 concordance. An appendix contains the Stata computer code and describes the input files used to generate concordances.

2. Brief Description of HS Codes

U.S. HS codes are based on the Harmonized System established by the World Customs Organization (WCO). The WCO assigns 6-digit codes for general categories, and countries adopting the system then define their own codes to capture commodities at more detailed levels. In the United States, the most detailed level of disaggregation is ten digits. In this paper, we refer to ten-digit codes as “product” or “goods” categories. U.S. export codes are administered by the United States Census Bureau (Census). U.S. import codes are administered by the U.S. International Trade Commission (USITC).

Changes to U.S. export or import product codes can occur via three routes: changes by the WCO to the official list of international six-digit prefixes; U.S. legislation that affects U.S. eight-digit codes (imports only); and changes by the Committee for Statistical Annotation of Tariff Schedules (known as the “484(f) Committee”) to statistical ten-digit codes.1

HS codes are updated for several reasons. The WCO, for example, makes adjustments to eliminate six-digit roots that capture little or no trade, with a goal of having trade roughly balanced across codes. In addition, the 484(f) Committee may may split a single HS code into several new codes in order to report import or export data at a more detailed level. Similarly, producers may petition one of the official bodies noted above for code changes to obtain a higher profile for the goods they export or import.

3. Data

Each year, Census publishes documents outlining the HS codes that have become “obsolete” and the “new” codes that will take their place. We refer to these documents as Census’ “new-obsolete” files. For exports, HS-code changes take effect annually in January; for imports, they can occur within as well as across years. New-obsolete files for years before 1997 are available only in hard copy and were transcribed into electronic form as part of the construction of our concordance. These files as well as electronic versions of subsequent files were obtained from Mayumi Hairston Escalante at Census. The most recent new-obsolete files are currently posted on the Census website.2

We use the terms “simple” and “complex” to describe the two basic changes to HS codes that can occur in a new-obsolete file. Simple changes make no adjustments to the actual items covered by a particular code, they just swap one ten-digit code for another. There are several possible reasons for a one-to-one re-numbering, including:

1. To align the Schedule B and HTS codes where Census finds their descriptions are the same;
2. To differentiate the Schedule B and HTS codes where Census has found them to be different;
3. To correct errors by reclassifying a commodity under a different subheading;
4. To maintain the level of statistical detail after a revision of the 6- or 8-digit codes; and
5. To accommodate a new numbering pattern, usually the result of another code being broken out.

In contrast to simple changes, complex changes alter the mix of items captured by a particular code. For these changes, the items formerly encompassed by one or more “obsolete” codes are distributed to one or more “new” codes. In 2002, for example, various types of waste oil, which previously were grouped with the fresh oils to which they were most similar, were given their own HS codes. As a result, the (now obsolete) former fresh oil product categories were linked to the new waste oil categories from which they emerged.

For each set of new-obsolete mappings in a particular new-obsolete file, we construct a synthetic HS code which we refer to as a “setyear” (setyr in our Stata code). This synthetic code records both the count of the change since the first change in 1989 and an identifier for when it takes place. Formally, for exports, it is defined as the count of the particular mapping plus the four-digit year in which the change occurs divided by 10,000. For imports, it is the count of the particular mapping plus six-digit year-month in which the change occurs divided by 1,000,000. The very first setyears for exports and imports, for example, are equal to 1.1989 and 1.198906.

Table 1 summarizes the number of new-obsolete mappings in the raw data for export and import codes, respectively. Results for export codes are displayed in the left panel while those for import codes are displayed in the middle and right panels. The first column of each panel notes the year-month in which the noted changes take place. The second and third columns report the total number of retired and replacement codes encompassed by the number of sets reported in column four. Note that the number of sets in column four is smaller than the numbers of HS codes in columns two and three because multiple codes are often involved in a particular change. The fifth column reports the number of changes that are “simple” in the sense outlined above.

As indicated in the table, HS codes are updated unevenly in the sense that some years (e.g., 2002) encompass substantially more changes than others (e.g. 2000).

4. Developing an HS Concordance

Concording HS codes over time is complicated by the existence of chains of HS-code changes across months and years into “family trees”. There are two basic types of family tree. We refer to the first case, displayed in Figure 1, generically as a “growing family tree”. In this case, code \(a \) from period \(t \) may become obsolete and be mapped to new codes \(b \) and \(c \) in period \(t + 1 \). Then, in period \(t + 2 \), codes \(b \) and \(c \) may become obsolete and be mapped to new codes \(e \) and \(f \), and \(g \) and \(h \),

\[\text{setyr} = \frac{\text{count of change}}{10,000} \text{ for exports} \]
\[\frac{\text{count of change}}{1,000,000} \text{ for imports} \]

Some new-obsolete files contain “blanket” mappings, our term for mappings that include codes ending in a series of X’s, e.g., 8486XXXXXX. We drop these observations.
Table 1: HS Code Changes by Year-Month

<table>
<thead>
<tr>
<th>Date</th>
<th>Obsolete</th>
<th>New</th>
<th>Sets</th>
<th>Simple</th>
<th>Date</th>
<th>Obsolete</th>
<th>New</th>
<th>Sets</th>
<th>Simple</th>
<th>Date</th>
<th>Obsolete</th>
<th>New</th>
<th>Sets</th>
<th>Simple</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989.01</td>
<td>234</td>
<td>310</td>
<td>157</td>
<td>92</td>
<td>1989.06</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>1998.01</td>
<td>52</td>
<td>85</td>
<td>47</td>
<td>18</td>
</tr>
<tr>
<td>1990.01</td>
<td>156</td>
<td>201</td>
<td>96</td>
<td>60</td>
<td>1990.07</td>
<td>112</td>
<td>196</td>
<td>91</td>
<td>27</td>
<td>1998.03</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1991.01</td>
<td>186</td>
<td>313</td>
<td>131</td>
<td>34</td>
<td>1990.01</td>
<td>346</td>
<td>724</td>
<td>295</td>
<td>15</td>
<td>1998.04</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1992.01</td>
<td>37</td>
<td>60</td>
<td>29</td>
<td>9</td>
<td>1990.05</td>
<td>16</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>1998.07</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>1993.01</td>
<td>64</td>
<td>126</td>
<td>60</td>
<td>19</td>
<td>1990.07</td>
<td>133</td>
<td>256</td>
<td>119</td>
<td>25</td>
<td>1998.09</td>
<td>9</td>
<td>23</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>1994.01</td>
<td>109</td>
<td>181</td>
<td>77</td>
<td>25</td>
<td>1990.08</td>
<td>38</td>
<td>49</td>
<td>30</td>
<td>17</td>
<td>1999.01</td>
<td>81</td>
<td>88</td>
<td>53</td>
<td>16</td>
</tr>
<tr>
<td>1995.01</td>
<td>137</td>
<td>205</td>
<td>113</td>
<td>63</td>
<td>1990.10</td>
<td>70</td>
<td>121</td>
<td>47</td>
<td>6</td>
<td>1999.07</td>
<td>54</td>
<td>70</td>
<td>33</td>
<td>5</td>
</tr>
<tr>
<td>1996.01</td>
<td>787</td>
<td>1,071</td>
<td>532</td>
<td>349</td>
<td>1991.01</td>
<td>69</td>
<td>194</td>
<td>45</td>
<td>40</td>
<td>2000.01</td>
<td>16</td>
<td>29</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>1997.01</td>
<td>216</td>
<td>232</td>
<td>145</td>
<td>107</td>
<td>1991.02</td>
<td>15</td>
<td>24</td>
<td>15</td>
<td>6</td>
<td>2000.03</td>
<td>11</td>
<td>3</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>1998.01</td>
<td>128</td>
<td>138</td>
<td>101</td>
<td>76</td>
<td>1991.05</td>
<td>11</td>
<td>20</td>
<td>11</td>
<td>2</td>
<td>2000.04</td>
<td>10</td>
<td>17</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>1999.01</td>
<td>23</td>
<td>29</td>
<td>22</td>
<td>17</td>
<td>1991.07</td>
<td>247</td>
<td>393</td>
<td>190</td>
<td>77</td>
<td>2000.07</td>
<td>6</td>
<td>13</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>2000.01</td>
<td>16</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>1992.01</td>
<td>85</td>
<td>138</td>
<td>50</td>
<td>27</td>
<td>2000.12</td>
<td>24</td>
<td>45</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>2001.01</td>
<td>16</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>1992.05</td>
<td>28</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>2001.01</td>
<td>119</td>
<td>113</td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>2003.01</td>
<td>97</td>
<td>87</td>
<td>81</td>
<td>74</td>
<td>1993.01</td>
<td>135</td>
<td>218</td>
<td>74</td>
<td>7</td>
<td>2002.01</td>
<td>1,122</td>
<td>1,542</td>
<td>874</td>
<td>595</td>
</tr>
<tr>
<td>2004.01</td>
<td>11</td>
<td>14</td>
<td>10</td>
<td>5</td>
<td>1993.02</td>
<td>42</td>
<td>51</td>
<td>42</td>
<td>33</td>
<td>2002.07</td>
<td>86</td>
<td>84</td>
<td>66</td>
<td>49</td>
</tr>
<tr>
<td>2005.01</td>
<td>43</td>
<td>82</td>
<td>38</td>
<td>8</td>
<td>1993.06</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>2002.08</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2006.01</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1993.07</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>2003.01</td>
<td>26</td>
<td>44</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>2007.01</td>
<td>1,140</td>
<td>1,030</td>
<td>821</td>
<td>631</td>
<td>1993.08</td>
<td>33</td>
<td>53</td>
<td>25</td>
<td>0</td>
<td>2003.02</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: Table reports changes to export (left panel) and import (middle and right panel) HS codes in noted year-month. Obsolete is number of codes retired from prior year. New is number of codes replacing these retirements. Sets is a count of the overall number of obsolete-new matches. Simple refers to re-numberings of individual codes.

respectively. Our concordance of the period t to period $t + 2$ HS codes assigns a common synthetic code to all HS codes in a growing family tree. Such an assignment may result in potentially many more HS codes being mapped to a given synthetic code in the final year of the concordance than in the first year.\(^4\)

The second type of family tree, which we refer to generically as a “shrinking family tree”, is displayed in Figure 2. In this case, codes a and b, and c and d, from period t separately become obsolete and mapped to codes e and f, respectively, in period $t + 1$. Then, in period $t + 2$, codes e and f become obsolete and are assigned to new code g. In this case, the number of HS codes mapped to the family’s common synthetic code declines over time.\(^5\)

The algorithm we develop for concording HS codes between arbitrary beginning and ending year-months accounts for both types of family trees, as well as combinations of the two types. Though specific details about how the algorithm is implemented can be determined by examining

\(^4\)In 1997, for example, 7802000000 is mapped to 7802000030 and 7802000060. In a 1996 to 1997 concordance, we would assign a single synthetic HS code to all of these actual HS codes.

\(^5\)In 1997, for example, 8506800010 and 8506800050 are mapped to 8506800000. In a 1996 to 1997 concordance, we would assign a single synthetic HS code to all of these actual HS codes.
Figure 1: Growing Family Tree

Figure 2: Shrinking Family Tree
Concording U.S. HS Codes Over Time

the Stata code in the Appendix, the basic steps are as follows:

1. Read in raw obsolete-new mappings;
2. Assign a single setyear to each obsolete-new mapping appearing in the raw files;
3. Choose a beginning and end year for the concordance;
4. Identify family trees extending between the beginning and end years of the concordance; and
5. Assign all members of a family tree the minimum setyear among family members within the
time-frame of the concordance. Note that the part of the setyear after the decimal point
identifies the year in which the family tree starts (i.e., period \(t \) in Figures 1 and 2 above).

In the Stata code below, a separate variable (named \texttt{effyr}) identifies the year in which a
particular new-obsolete mapping occurs.\(^6\)

Step four is accomplished by successively merging subsequent obsolete-new mappings to all
periods’ new-obsolete mappings between the beginning and end years of the concordance. To
bridge codes used from 1989 to 2004 for example, the chained file is constructed as follows. First,
merge the new codes in the 1990 file to the obsolete codes in 1991 file, dropping any codes that
are unique to 1991. Second, merge the obsolete codes in the 1992 file to the new codes in the
previously merged 1990-1991 file, again dropping any codes unique to 1992. And so on. Note
that this successive merging has to be done starting with every year-month between the beginning
and ending year-month because chains can begin in any year-month, and they would be missed
otherwise given the dropping just mentioned. After these chains are created, they are appended
into a single file and added to all obsolete-new mappings that are not parts of a chain.

5. A 1989-to-2004 Concordance

This section describes the 1989 to 2004 concordance used by Bernard, Jensen, Redding and
Schott (2009) in their analysis of the margins of U.S. trade. The first and second columns of Table
2 summarize total U.S. exports in 1989 and 2004 and the total number of HS product categories
exported in those two years, respectively. Columns three and four provide analogous detail with
respect to U.S. imports. As indicated in the table, (nominal) exports more than double while
(nominal) imports more than triple over the fifteen-year interval. The number of pre-concorded
export and import HS codes observed in each year of data, by contrast, grow 13 percent and 21
percent, respectively.

Table 2: Trade in 1989 and 2004

<table>
<thead>
<tr>
<th></th>
<th>Exports</th>
<th></th>
<th>Imports</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value Codes</td>
<td>Value Codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>354</td>
<td>7,853</td>
<td>468</td>
<td>13,941</td>
</tr>
<tr>
<td>2004</td>
<td>818</td>
<td>8,859</td>
<td>1,460</td>
<td>16,836</td>
</tr>
</tbody>
</table>

Notes: Export and import values in billions of U.S.
dollars. Number of codes refers to number of original
ten-digit HS categories in the raw trade data.

\(^6\)For example, in 1998 export code 8531800035 from 1997 is mapped to code 8531804000. Then, in 2002, codes
8531804000 and 8527908015 from 2001 are mapped into 8527908600. The setyr for the family is 1404.1998. The
integer part of this setyr indicates that the first mapping in the family, from 8531800035 to 8531804000, is the 1404\(^{th}\)
mapping since 1989. The part after the decimal point indicates it occurs in 1998. The effyr for the two mappings
are 1998 and 2002, respectively.
Table 3 reports two decompositions of export and import codes. The first three rows of the Table show how many of the original HS codes in each year survive versus being replaced by synthetic codes. The remaining rows in the table decompose the actual plus synthetic codes that remain after the concordance into those which are common across years and those which are idiosyncratic to a particular year.

Table 3: Distribution of Product Codes in Matched 1989 to 2004 U.S. Trade Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Original HS Codes</td>
<td>7,853</td>
<td>100</td>
<td>8,859</td>
<td>100</td>
</tr>
<tr>
<td>Not Replaced by Synthetic Codes</td>
<td>5,349</td>
<td>68</td>
<td>5,341</td>
<td>60</td>
</tr>
<tr>
<td>Replaced by Synthetic Codes</td>
<td>2,504</td>
<td>32</td>
<td>3,518</td>
<td>40</td>
</tr>
<tr>
<td>Actual + Synthetic Codes After Concordance</td>
<td>6,978</td>
<td>89</td>
<td>6,971</td>
<td>79</td>
</tr>
<tr>
<td>Actual Codes</td>
<td>5,349</td>
<td>68</td>
<td>5,341</td>
<td>60</td>
</tr>
<tr>
<td>Common to both years</td>
<td>5,318</td>
<td>68</td>
<td>5,318</td>
<td>60</td>
</tr>
<tr>
<td>Appear in only one year</td>
<td>31</td>
<td>0</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Synthetic Codes</td>
<td>1,629</td>
<td>21</td>
<td>1,630</td>
<td>18</td>
</tr>
<tr>
<td>Common to both years</td>
<td>1,624</td>
<td>21</td>
<td>1,624</td>
<td>18</td>
</tr>
<tr>
<td>Appear in only one year</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: Table decomposes the number of original HS codes in each year into those replaced by a synthetic code versus not, and total surviving HS plus synthetic codes in each year into noted sub-groups. All replacements are with respect to a 1989 to 2004 concordance. Values are in millions of U.S. dollars. Even columns display values as a percent of first row in preceding column.

Of the 7,853 original HS codes appearing in the 1989 U.S. export data, for example, 2,504 are replaced by synthetic codes. Since the same synthetic code is often assigned to more than one original code, the resulting concorded dataset contains 6,978 actual plus synthetic codes. Of these, 5,349 and 1,629 are actual and synthetic, respectively. Each of these totals, in turn, can be broken down into actual codes which are common to both 1989 and 2004 (5,318), synthetic codes that are common to both 1989 and 2004 (1,624), actual codes unique to 1989 (31) and synthetic codes that are unique to 1989 (5). These breakdowns reveal that the number of actual and synthetic export and import goods actually added and dropped between 1989 and 2004 is relatively small.

The values of U.S. exports and imports associated with each of the cells in Table 3 are reported in Table 4. As indicated below, synthetic codes account for the majority of import value in both 1989 and 2004.

Table 4: Distribution of Value in Matched 1989 to 2004 Trade Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Original HS Codes</td>
<td>353,766</td>
<td>100</td>
<td>817,936</td>
<td>100</td>
</tr>
<tr>
<td>Not Replaced by Synthetic Codes</td>
<td>206,556</td>
<td>58</td>
<td>428,571</td>
<td>52</td>
</tr>
<tr>
<td>Replaced by Synthetic Codes</td>
<td>147,210</td>
<td>42</td>
<td>389,366</td>
<td>48</td>
</tr>
<tr>
<td>Actual + Synthetic Codes After Concordance</td>
<td>353,766</td>
<td>100</td>
<td>817,936</td>
<td>100</td>
</tr>
<tr>
<td>Actual Codes</td>
<td>206,555</td>
<td>58</td>
<td>428,571</td>
<td>52</td>
</tr>
<tr>
<td>Common to both years</td>
<td>188,832</td>
<td>53</td>
<td>408,903</td>
<td>50</td>
</tr>
<tr>
<td>Appear in only one year</td>
<td>17,723</td>
<td>5</td>
<td>19,668</td>
<td>2</td>
</tr>
<tr>
<td>Synthetic Codes</td>
<td>147,210</td>
<td>42</td>
<td>389,366</td>
<td>48</td>
</tr>
<tr>
<td>Common to both years</td>
<td>147,143</td>
<td>42</td>
<td>388,971</td>
<td>48</td>
</tr>
<tr>
<td>Appear in only one year</td>
<td>17,723</td>
<td>5</td>
<td>19,668</td>
<td>2</td>
</tr>
</tbody>
</table>

Notes: Table decomposes U.S export and import value according to whether HS codes are original or synthetic. All replacements are with respect to a 1989 to 2004 concordance. Values are in millions of U.S. dollars. Even columns display values as a percent of first row in preceding column.

Tables 3 and 4 also underscore the prevalence of changes in HS codes over time. As of 2004, 49 percent of import products and 40 percent of export products had been involved in an HS code change. Moreover, trade in products with code changes accounted for 62 percent of the value of
U.S. imports and 48 percent of the value of U.S. exports in 2004. Tracking changes in HS codes over time, therefore, is important in any empirical research using international trade data classified by HS codes, and critical when studying topics such as new product introduction.\footnote{We note that two features of Census’ new-obsolete mappings complicate the identification of new product introductions (e.g., iPods). First, new HS codes always emerge from predecessor HS codes. Second, new HS codes’ emergence may take place an unknown period of time after an underlying good has been introduced. Statistical agencies may wait to establish a new HS category until it reaches a certain size or until manufacturers apply sufficient lobbying.}

6. Conclusion

This paper has presented an algorithm for concording ten-digit U.S. Harmonized System (HS) product codes over time and described how the algorithm can be used to create concordances with arbitrary beginning and end years. Furthermore, in summarizing the 1989 to 2004 concordance used in Bernard, Jensen, Redding and Schott (2009) it has illustrated the prevalence of changes in HS codes over time and the importance of tracking these changes when conducting empirical research in international trade.
References

A Appendix

This appendix provides Stata code that can be used to create HS concordances. It also describes the input and output files associated with this code. These files are contained in the zip file hs_over_time_20090302.zip, which is available on the authors’ websites. The two sections of code below contain our algorithm for creating export and import HS concordances for arbitrary beginning and ending year-months between 1989 and 2007. Those comfortable with Stata programming should find it relatively easy to manipulate. Those unfamiliar with Stata programming can instead use one of the output files described below.

Each program requires as an input a data file containing the raw new-obsolete mappings discussed in the main text. These input files are named sch_b_concordances_20081101_02.dta and hts_concordances_20081101_02.dta, respectively, with the string after the “_” reflecting the version date of the file. The basic structure of these input files resembles the raw new-obsolete files, i.e., each set of obsolete HS codes is followed by the new set of HS codes into which they map. They are posted to the same website where this paper is found and contain the following variables:

- obsolete: old HS codes that become obsolete as of effective date;
- new: new HS codes associated with the obsolete codes;
- setyr: synthetic code to which new and obsolete codes belong, as defined in main text; and
- effyr: date the mapping is effective.

The first two sections of code below produce the output files that can be used to concord HS codes in U.S. import and export data, as demonstrated in the last section of this Appendix. Specifically, the code produces output files sch_b_concordances_VER_BEG_END.dta and hts_concordances_VER_BEG_END.dta, where VER, BEG and END reflect user-defined version dates (currently 20081101) and beginning-end years (exports: 1989_2007) or year-months (imports: 198906_200707), respectively. These concordances include the same variables as the input files, but with setyr and effyr standardized across family trees, as described in Section 4 above. Variables in the concordance output files include:

- obsolete: obsolete HS code;
- new: corresponding new HS code;
- setyr: synthetic code linking this mapping to all mappings in its family tree;
- effyr: year (export) or year-month (import) in which the particular new-obsolete mapping first appears in the raw data.

For those unfamiliar with Stata programming we also provide two additional output files in .txt format. These output files, named setyr_x_1989_2007.txt and setyr_m_1989_2007.txt, provide a record of every HS code associated with every setyr that appears in the 1989-2007 concorded data. The first column of each file lists the setyr’s, sorted from low to high. Each additional column lists the actual HS codes appearing in a particular year of the trade data that should be replace by the setyr. These actual HS codes also are sorted from low to high in each year. To concord U.S. trade data from 1989 to 2007, one would just replace all codes listed in the table with the synthetic setyr, and then collapse the data according to these setyr’s. HS codes not appearing in these output files are consistent across all years of the data.
A1. *Stata Code for Schedule B Concordance*

**1 Preliminaries

clear
set more off
set mem 1000m

**2 Create a file that chains years together

** Note that to chain you have to always match later years to earlier years. That is the reason
** that the second loop below is nested
** Note that you must set the local variables for the beg and end year you want;
** these locals govern both this and the next section.
local b = 1989
local e = 2004
local b1 = ‘b’+1
set more off
quietly {
* chop up the data in the main file created above year and rename the vars for
* the merging to take place in the next loop
forvalues y=' b' /' e'{
 use sch_b_concordances_20081101_02, clear
 keep if effyr==‘y’
 rename new new’ y’
 rename obsolete obs’y’
 rename setyr setyr’y’
 rename effyr effyr’y’
 order obs’y’ new’y’
 sort obs’y’
 save temp_xchain_’y’, replace
}
* use the chopped up files from above to chain the obs-new matches across years.
* the goal is to find news from subsequent years that modify new’s from earlier years
* the joinby command assumes all possible trees from a given origin are captured
* note that after the inside loop, which matches subsequent years to a given year, we drop
* observations unless they are chained, i.e., unless the merge code = 3
forvalues s=' b' /' e'{
 use temp_xchain_’s’, clear
 rename obs’s’ obs
 forvalues t=' b' /' e'{
 if ‘t’>’s’ {
 noisily display [’s’] “ ” [’t’]
 rename new’s’ obs’t’
 sort obs’t’
 joinby obs’t’ using temp_xchain_’t’, unmatched(master)
 noisily tab _merge
 drop if _merge==2
 rename _merge _m’s”t’
 rename obs’t’ new’s’
 }
 }
}
Concording U.S. HS Codes Over Time

```stata
gen _mjunk=0
egen idx = rowmax(_m*)
noisily tab idx
keep if idx==3
sort obs
drop _m*
save temp2_xchain_'s', replace

**3 Assign single setyear to all members of a family
**put the above chains, each of which starts with a different year from 1989 to 2004, back
**together into one file for the whole sample period;
**challenge here is to set a single setyr for all “families” revealed by the chain;
**note that there are two cases for a “family”. in the first, all members sprout from the same
**obsolete code in some year. in the second, two sub-families in an early year are joined by a
**common code of set of codes in a subsequent year.
**the iteration of min commands below takes care of both cases by searching for the setyr for
**a family that covers all of its members.
use temp2_xchain_'b', clear
forvalues y='b1'/'e'{
    append using temp2_xchain_'y'
}
keep obs new* setyr* effyr*
capture duplicates drop
egen double setyr = rowsmin(setyr*)
egen nchain = rowsnonmiss(new*)
rename obs obsolete
order obs setyr
save temp2_xchain, replace
use temp2_xchain, clear
drop setyr effyr*
egen t1 = seq(), by(obs)
reshape long new setyr, i(obs t1) j(effyr)
drop if new==. & setyr==.
drop t1 nchain
duplicates drop obs effyr new setyr, force
egen osd=sd(setyr), by(obs)
egen nsd=sd(setyr), by(new)
sum nsd osd
drop osd nsd
*Now add back in the obs-new observations that are not part of chains (from section 2)
*have to add these in before the min loop below in case a non-chain obs-pair is part of a family
sort obsolete new effyr
merge obsolete new effyr using sch_b_concordances_20081101_02
```
Concording U.S. HS Codes Over Time

```
drop if effyr<‘b’ | effyr>‘e’
tab _merge
drop _merge
*now start family identification loop
egen double t1 = min(setyr), by(obs)
rename setyr oldsetyr
local zzz = 2
local stop = 0
while ‘stop’==0 {
    quietly {
        noisily display [‘zzz’]
        local zlag = ‘zzz’-1
        if mod(‘zzz’,2)==0 {
            egen double t’zzz’ = min(t’zlag’), by(new)
        }
        if mod(‘zzz’,2)~==0 {
            egen double t’zzz’ = min(t’zlag’), by(obs)
        }
        compare t’zzz’ t’zlag’
gen id = t’zzz’==t’zlag’
tab id
        local stop = r(r)==1
        local zzz = ‘zzz’+1
        display r(r) “ “ [‘stop’]
drop id
    }
}
local yyy = ‘zzz’-1
gen double setyr = t’yyy’
keep obs effyr new setyr
duplicates drop
sort obsolete new effyr
save sch_b_concordances_20081101_‘b’_‘e’, replace
!erase temp*.dta tn.dta to.dta sch_b*_01.dta sch_b*_02.dta
```

A2. *Stata Code for HS Concordance*

1 Preliminaries
clear
set more off
set mem 1000m

2 Create a file that chains years together
** Note that to chain you have to always match later years to earlier years. That is the reason
** that the second loop below is nested
** Note that you must set the local variables for the beg and end year you want;
** these locals govern both this and the next section.

local b = 1989.06
local e = 2004.07

set more off

quietly {
*chop up the data in the main file created above year and rename the vars for
*the merging to take place in the next loop; have to do this for every year-month
*because chains below need to start, iteratively, with each year-month
foreach y in 'list1' 'list2' 'list3' {
 nosily display ['y']
 local yn = int('y'*100)
 use hts_concordances_20081101_02, clear
 keep if effyr==='y'
 rename new new' yn'
 rename obsolete obs'yn'
 rename setyr setyr' yn'
 rename effyr effyr'yn'
 order obs'yn' new'yn'
 sort obs'yn'
 save temp_xchain_'yn', replace
}
*use the chopped up files from above to chain the obs-new matches across years.
*the goal is to find new's from subsequent years that modify new's from earlier years
*the joinby command assumes all possible trees from a given origin are captured
*note that after the inside loop, which matches subsequent years to a given year, we drop
*observations unless they are chained, i.e., unless the merge code = 3
foreach s in 'list1' 'list2' 'list3' {
 local sn = int('s'*100)
 if 's'>='b' & 's'<=='e' {
 use temp_xchain_ 'sn', clear
 rename obs'sn' obs
 foreach t in 'list1' 'list2' 'list3' {
 if 't'>='s' & 't'<=='e' {
 nosily display ['s'] " " ['t']
 local tn = int('t'*100)
 rename new'sn' obs'tn'
 sort obs'tn'
 joinby obs'tn' using temp_xchain_ 'tn', unmatched(master)
 nosily tab _merge
 drop if _merge==2
 rename _merge _m'sn''tn'
 } } } } }
rename obs’tn’ new’sn’
}
}
gen _mjunk=0
egen idx = rowmax(_m*)
noisily tab idx
keep if idx==3
sort obs
drop _m*
save temp2_xchain_‘sn’, replace
}
}

**3 Assign single setyear to all members of a family
**put the above chains, each of which starts with a different year from 1989 to 2004, back
**together into one file for the whole sample period;
**challenge here is to set a single setyr for all “families” revealed by the chain;
**note that there are two cases for a “family”. in the first, all members sprout from the same
**obsolete code in some year. in the second, two sub-families in an early year are joined by a
**common code of set of codes in a subsequent year.
**the iteration of min commands below takes care of both cases by searching for the setyr for
**a family that covers all of its members.set more o¤
local b = 1989.06
local e = 2004.07
local b1 = 1989.01
local bn = int(‘b’*100)
local en = int(‘e’*100)
local b1n = int(‘b1’*100)
use temp2_xchain_‘bn’, clear
foreach y in ‘list1’ ‘list2’ ‘list3’ {
if ‘y’>’b’ & ‘y’<=’e’ {
local yn = int(‘y’*100)
display [‘y’]
append using temp2_xchain_‘yn’
}
}
keep obs new* setyr* effyr*
capture duplicates drop
egen double setyr = rowmin(setyr*)
egen nchain = rownonmiss(new*)
rename obs obsolete
order obs setyr
sort obs
save temp2_xchain, replace
use temp2_xchain, clear
drop setyr effyr*
egen t1 = seq(), by(obs)
reshape long new setyr, i(obs t1) j(effyr)
rename effyr t2
gen double effyr = t2/100
drop if new==. & setyr==.
drop t1 nhchain t2
duplicates drop
egen osd=sd(setyr), by(obs)
egen nsd=sd(setyr), by(new)
sum nsd osd
drop osd nsd
*Now add back in the obsolete-new observations that are not part of chains. These come from section 1
*have to add these in before the min loop below in case a non-chain obs-pair is part of a family
sort obsolete new effyr
merge obsolete new effyr using hts_concordances_20081101_02
drop if effyr<’b’ | effyr>’e’
tab _merge
drop _merge
*now start family identification loop
egen double t1 = min(setyr), by(obs)
rename setyr oldsetyr
local zzz = 2
local stop = 0
while ‘stop’==0 {
 quietly {
 noisily display [’zzz’]
 local zlag = ’zzz’-1
 *mod(x,y) = x - y*int(x/y).
 if mod(’zzz’,2)==0 {
 egen double t’zzz’ = min(t’zlag’), by(new)
 }
 if mod(’zzz’,2)’=0 {
 egen double t’zzz’ = min(t’zlag’), by(obs)
 }
 compare t’zzz’ t’zlag’
gen idx = t’zzz’==t’zlag’
tab idx
 local stop = r(r)==1
 local zzz = ’zzz’+1
 noisily display r(r) " " [’stop’]
 drop idx
 }
}
local yyy = 'zzz'-1
gen double setyr = t’yyy’
keep obs effyr new setyr
rename effyr effyrmo
gen effyr = int(effyrmo)
duplicates drop
sort obsolete new effyrmo
save hts_concordances_20081101_‘bn’_‘en’, replace
!erase temp*.dta tn.dta to.dta hts*_01.dta hts*_02.dta

A3. Stata Code for Implementing Concordance in U.S. Trade Data

/*/ Note that you must change the use and save commands below
depending on whether you are concording export or import data */

quietly {
forvalues y=1989/2004 {
 local ylead = ‘y’+1
 noisily display " "
 noisily display " "
 noisily display " "
 noisily display "NEW LOOP " [‘y’]
 noisily display " "
 noisily display " "

 *get obsolete-new files ready
 *tempobsolete is used to assign setyrs to codes that are last used in year y
 *basically want to insure against the code ever becomming obsolete, i.e., it being
 *an obsolete code in any year after the year of the loop
 *note the input file varies depending on whether import or export data
 *use sch_b_concordances_20081101_1989_2004, clear
 use hts_concordances_20081101_1989_2004, clear
 keep if effyr>=‘ylead’
 keep obsolete setyr
 drop if obsolete==.
 capture duplicates drop
 sort obsolete
 save tempObsolete, replace
 *temp_new is used to assign setyrs to codes that are new in year y
 *basically want to insure against this code ever having been a new code prior to this
 *year; if so, need to assign it a setyr
 *use sch_b_concordances_20081101_1989_2004, clear
 use hts_concordances_20081101_1989_2004, clear
Concording U.S. HS Codes Over Time

*read in data and collapse to appropriate level

*assume trade file is called exports_Y or imports_Y, where Y=year
*assume file contains v=value, hs1=hs code, country1=us country code,
*year and month
*use exports_'y', clear
use imports_'y', clear
rename all_val_yr v
destring commodity, force g(hs1)
gen year = ‘y’
gen month = int(uniform()*12) + 1
gen rp = uniform() > 0.5
destring cty_code, force g(country1)
gen alpha1 = 1
collapse (sum) v, by(hs1 country1 month year)
format hs1 %15.0f
*merge in obsolete-code family identifiers
rename hs1 obsolete
sort obsolete
merge obsolete using tempObsolete, keep(setyr)
oisily tab _merge
drop if _merge==2
drop _merge
rename obsolete hs1
*merge in new-code family identifiers
rename hs1 new
sort new
merge new using temp_new, keep(setyr) update
oisily tab _merge
drop if _merge==2
drop _merge
save exports_Y_concorded_precollapse, clear
save imports_Y_concorded_precollapse, clear
rename new hs1
*resent hs codes to family identifiers where appropriate
replace hs1=setyr if setyr~=
collapse (sum) v, by(hs1 country1 month year)
*save exports_Y_concorded, replace
save imports_Y_concorded, replace

}
*create files matching actual codes to setyr's by year
forvalues y=1989/2004 {
 *use exports_'y' concorded_precollapse, replace
 use imports_'y' concorded_precollapse, replace
 rename hs1 hs'y'
 drop v
 drop if setyr==.
 sort setyr hs'y'
 *save junk_x_'y', replace
 save junk_m_'y', replace
}

*use junk_x_1989, replace
use junk_m_1989, replace
forvalues y=1990/2004 {
 display ['y']
 *merge setyr using junk_x_'y'
 merge setyr using junk_m_'y'
 tab _merge
 drop _merge
 order setyr
 sort setyr hs'y'
}

forvalues y=1989/2004 {
 egen i'y' = tag(setyr hs'y')
 replace hs'y'=. if i'y'==0
 drop i'y'
}

*now sort each column within setyr
egen xx = seq()
drop xx
reshape long hs, i(xx setyr) j(year)
sort year setyr hs
drop xx
egen xx = seq(), by(year)
reshape wide hs, i(xx setyr) j(year)
drop xx
*save setyr_x_1989_2004, replace
save setyr_m_1989_2004, replace