Theory and Methodology

Manufacturing flexibility: Measures and relationships

Rodney P. Parker a,*, Andrew Wirth b

a School of Business Administration, The University of Michigan, 701 Tappan Street, Ann Arbor, MI 48109-1234, USA
b Department of Mechanical and Manufacturing Engineering, The University of Melbourne, Parkville, Victoria 3052, Australia

Received 1 August 1994; accepted 1 June 1998

Abstract

The study and formulation of manufacturing flexibility measures has been inhibited by the lack of a conceptual structure to encourage model development. In this paper, we introduce a framework to facilitate the development of flexibility measures. It also proves to be useful in validating measures of flexibility types. Measures of various flexibility types are drawn from the literature and compared with the purposes and criteria for the flexibility types and the ‘best’ measures are presented. For volume and expansion flexibility, the framework is used to develop new measures. This is followed by a discussion of the relationships among flexibility types and some sample relationships are highlighted. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Flexible manufacturing systems; Flexibility measures; Manufacturing

1. Introduction

Flexible manufacturing systems (FMSs) are technologies combining the benefits of both computers and numerical control machine tools. They have been hailed as the solution to challenges facing manufacturing industries world-wide. However, soon after the rapid growth in FMS installations, operations managers realized that the simple investment in flexible manufacturing systems would not readily answer the market’s desire for more rapid delivery, more product variety, more customized product designs, and higher product design turnover as evidenced by reduced product life cycle lengths. Several companies have illustrated how successful use of FMS has resulted in the above mentioned benefits to customers (e.g. Motorola, Toyota). These companies have realized that a successful technical implementation alone is not enough and that FMS investment must correlate with the corporate and manufacturing strategy the firm is following. When both business and technical success is achieved, the celebrated flexibility benefits may ensue, as recognized by Voss (1988). However, there is ample evidence (see Jaikumar, 1986) to suggest that the management of these technical systems is no easy task.

Bolwijn and Kumpe (1990) and De Meyer et al. (1989) have identified ‘flexibility’ as the focus of the next competitive battle. De Meyer et al. state
that this battle “will be waged over manufacturers’ competence to overcome the age old trade-off between efficiency and flexibility”. However, confusion over what constitutes flexibility still occurs. Gerwin (1993) suggests that the lack of full understanding of manufacturing flexibility is inhibiting progress towards the utilization of flexibility concepts in industry and impeding manufacturing managers from evaluating and changing the flexibility of their operations. Gunasekaran et al. (1993) and Gerwin (1993) identify the measurement of flexibility and performance as an important hurdle to achieving a full comprehension of FMS behavior, and a stepping stone to establishing full economic-based measures. Gunasekaran et al. (1993) also state that the complex inter-relationships among various aspects of flexibility will be further advanced by the development of flexibility measures and that understanding these flexibility trade-offs “can help the management to support the manufacturing strategy of the firm”.

Empirically measuring flexibility in manufacturing has begun recently (see Dixon, 1992; Upton, 1994, 1997) in specific industries. Such studies promise much but sound measures of flexibility need to be developed first. In this paper we introduce a framework to facilitate flexibility measure development, introduce two new measures, and analyse the relations among some flexibility types.

2. Manufacturing flexibility

2.1. Flexibility taxonomies

The taxonomy of flexibility types established by Browne et al. (1984) has formed the foundation of most subsequent research into measuring manufacturing flexibility. In an excellent review, Sethi and Sethi (1990) identify over 50 terms for various flexibility types, although generally the basis of all work has been that of Browne et al. For completeness we restate the flexibility type definitions below.

Machine flexibility “refers to the various types of operations that the machine can perform without requiring prohibitive effort in switching from one operation to another” (Sethi and Sethi, 1990).

Process flexibility is the ability to change between the production of different products with minimal delay.

Product flexibility is the ability to change the mix of products in current production, also known as mix-change flexibility (see Carter, 1986).

Routing flexibility is the ability to vary the path a part may take through the manufacturing system.

Volume flexibility is the ability to operate profitably at different production volumes.

Expansion flexibility is the ability to expand the capacity of the system as needed, easily and modularly.

Operation flexibility is the ability to interchange the sequence of manufacturing operations for a given part.

Production flexibility is the universe of part types that the manufacturing system is able to make. This flexibility type requires the attainment of the previous seven flexibility types.

Measures for most of these flexibility types have been attempted. However, there has not been a consistent structured approach to the measure development and, therefore, the success of these measures has been sporadic. Gupta and Goyal (1989) presented a classification of flexibility measures “based on the ways researchers have defined flexibility and the approaches used in measuring it”. The categories defined are: (1) measures based on economic consequences; (2) measures based on performance criteria; (3) the multi-dimensional approach; (4) the Petri-nets approach; (5) the information theoretic approach; and (6) the decision theoretic approach. The measures created and evaluated in this paper are based on performance criteria and economic consequences, although the multi-dimensional approach is also examined. Gupta and Goyal (1989) intend the multi-dimensional approach to encompass the variety of distinct dimensions. There are a variety of dimensions along which the measures can be developed and compared. A listing of these dimensions follows.

The following taxonomy is a compilation of mutually exclusive “dimensions of comparison” from the literature. These dimensions are characteristic coordinates which help describe the nature
of the flexibility types. The definitions of the dimensions and their respective authors are:

System vs machine: Buzacott (1982) regards machine level flexibility as a flexibility type which is contained or determined by the machine whereas a system level flexibility is one which comes from the capabilities of the entire system.

Action vs state: Mandelbaum (1978) considers how flexibility accepts change. If the ability to perform well in the new state is already there when the change takes place, state flexibility is present. If this ability is acquired by taking appropriate action after the change takes place, action flexibility is present.

Static vs dynamic: Carlsson (1992) states “Static flexibility refers to the ability to deal with foreseeable changes (i.e. risk), such as fluctuations in demand, shortfall in deliveries of inputs, or breakdowns in the production process” and “Dynamic flexibility refers to the ability to deal with uncertainty in the form of unpredictable events, such as new ideas, new products, new types of competitors, etc.”

Range vs response: Slack (1987) suggested managers thoughts about flexibility were assisted by considering range and response dimensions. Range flexibility is typically regarded as the extent to which a system may adapt, whereas response flexibility captures the rate at which the system can adapt.

Potential vs actual: Browne et al. (1984) discusses the dimensions of potential and actual flexibility, particularly with respect to routing flexibility. Potential flexibility occurs when the flexibility is present but is utilized only when needed, such as a part being re-routed when a machine breakdown occurs. Actual flexibility refers to the flexibility which is utilized regardless of the environmental status.

Short term vs long term: Carter (1986) and others suggest the categories for which a flexibility type influences the system or the system’s environment in particular time frames, and therefore the flexibility type is considered to be either a short, medium or long term flexibility.

Table 1 contains the dimensions of comparison that are clearly dominant. Where both are clearly present, we enter “both”. This table is only a guide and several of the entries are included with heavy qualifications.

An interesting observation from Table 1 is that there seems to be a consistent positive correlation between the system vs. machine focus and the short vs. long-term time frame. With only a couple of exceptions, machine focused flexibility types tend to be ones that impact in the short term (minutes to days) and system focused flexibility types tend to influence performance in the longer term (years). We suggest this confirms intuition as we would consider the investment of a complete system as one, which is driven primarily by the strategic manufacturing mission of the company which traverses the long-term time frame.

2.2. Developmental framework model

The basis of the framework (illustrated in Fig. 1) is straightforward: we believe the lack of consistency across existing flexibility measures is due directly to the lack of discussion of the pur-

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Flexibility types</th>
</tr>
</thead>
<tbody>
<tr>
<td>System vs. machine</td>
<td>Machine, Process</td>
</tr>
<tr>
<td>Action vs. state</td>
<td>State, Static</td>
</tr>
<tr>
<td>Static vs. dynamic</td>
<td>Static, Dynamic</td>
</tr>
<tr>
<td>Range vs. response</td>
<td>Both, Both</td>
</tr>
<tr>
<td>Potential vs. actual</td>
<td>Actual, Usage</td>
</tr>
<tr>
<td>Short, medium, long term</td>
<td>Short, Medium</td>
</tr>
</tbody>
</table>
poses of such measures. Most of the literature purely lists proposed measures but rarely mentions the purposes and criteria against which the measure can be judged, qualitatively or quantitatively. This paper seeks to establish a clearly defined list of the uses for the measure of a flexibility type and a list of criteria against which a proposed measure may be judged. In some cases the measure itself is defined, keeping in mind the purpose of the flexibility type and how the measure may be used. The purposes of the flexibility measure will be largely determined by the flexibility measure category, defined in Gupta and Goyal (1989).

Clearly, great creativity and effort will still be required in developing flexibility measures but explicitly tabulating the purposes and criteria will assist in achieving a successful measure. In Section 2.3 the development tool is used to validate existing measures for flexibility types, drawn from the literature. Flexibility measures for various flexibility types are assessed relative to a list of criteria generated after the purposes of the flexibility type and flexibility measure are examined. Accordingly, a “winner” is found for each flexibility type; the winners are judged to be those measures which comply with the greatest number of criteria, or potentially a weighted sum if certain criteria are deemed more important than others.

2.3. Evaluations of existing measures

Using the framework described above we examined the literature with the intention of analyzing the existing measures, comparing the measures with purposes and criteria established separately. We found acceptable measures for five of the eight Browne et al. flexibility types and decided that further development of measures for these types would not be constructive.

Machine flexibility is the ability to perform a variety of operations on a single machine. The purposes of the measures are generally to capture characteristics of machine flexibility not portrayed by other equipment descriptors such as price, size, speeds, tolerances, weight and part limits. Some criteria for machine flexibility performance measures include: they must describe the main features, that is, the ability to change between operations with minimal setups and delays; they must be amenable to calculation (this would mean that they can be computed on a PC spreadsheet at most, and preferably on a calculator); they would more naturally be given in performance measure terms rather than monetary terms; they should “increase (decrease) in value if the machine can do more (fewer) tasks with positive efficiency” (Brill and Mandelbaum, 1990); they should “increase (decrease) in value if the efficiency for doing any one task increases (decreases)” (Brill and Man-
delbaum, 1990); they should “increase (decrease) in value if the importance weight of any doable task increases (decreases)” (Brill and Mandelbaum, 1990); and they should “be applicable to continuous as well as discrete and multi-dimensional background sets of possible tasks” (Brill and Mandelbaum, 1990). Brill and Mandelbaum (1989, 1990) defined a measure for machine flexibility which tends to satisfy the purposes and criteria. The measure is a weighted normalized sum of task efficiencies. Task efficiency (some papers refer to it as effectiveness) is a measure of how well the machine can perform the relevant task. These efficiencies are weighted by how important the task is to the production of the part or product, whether the importance could be determined by time or economic factors. There is a large degree of latitude that may be exercised in applying this measure. If a task cannot be completed, it is allocated an efficiency rating of zero, or equivalently, is excluded from the machine-task capability set. The efficiency rating is judged according to some standard established by the user. An example of a standard could be the time of execution of the task on the fastest known machine, and hence, the efficiency measure could be the measure of how closely a particular machine’s time for a specific task compares with the best known time, increasing as it gets closer to the best time.

It can be seen in Table 2 that there is a direct correspondence between the purposes and criteria listed. Table 2 also illustrates that the Brill and Mandelbaum measure satisfies all the given criteria. A simple count of the satisfied criteria can serve as arbiter of whether the measure is satisfactory or not. Alternatively, a continuous metric could be applied to the judgment of how well each criterion is met and a normalized sum or weighted normalized sum could be used to judge merit.

Process flexibility is the ability to change between the production of different products with minimal delay. Browne et al. (1984) say it is “the ability to produce a given set of given part types, each possibly using different materials in several ways”. Sethi and Sethi (1990) set out the purposes of process flexibility, namely to reduce batch sizes and reduce inventory costs. Other contributors suggest it can minimize the need for duplicate or redundant machines (Carter, 1986), and protect against market variability (Carter, 1986) by accommodating shifts in the product mix demand by the market. The criteria of a measure include: describe the main features of process flexibility, namely the ability to change between the manufacture of different products without prohibitive changeover time or cost; be amenable to calculation; increase (decrease) with increasing (decreasing) product portfolio size; increase (decrease) with an increasingly (decreasingly) versatile material handling system and increasingly (decreasingly) adaptive jigs; and increase (decrease) with decreasing (increasing) changeover cost and decreasing (increasing) changeover time. De Groote (1992) developed a pair of measures (the reciprocal of the setup cost and the maximum number of setups per unit time) which satisfy the criteria quite well but concludes that the nature of the flexibility type prohibits the creation of a single measure.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Criteria</th>
<th>Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>The main features of machine flexibility should be described, namely to “perform several operations on one part to save several setups” Sethi and Sethi (1990)</td>
<td>Should “increase (decrease) if the machine can perform more (fewer) tasks with positive efficiency” (Brill and Mandelbaum, 1990)</td>
<td>Yes</td>
</tr>
<tr>
<td>To be computed on a PC</td>
<td>Should be a single equation, or at most a small set of equations</td>
<td>Yes</td>
</tr>
<tr>
<td>To be used within a larger study to represent machine flexibility</td>
<td>Should be able to represent discrete and continuous operations</td>
<td>Yes</td>
</tr>
</tbody>
</table>
This results in ambiguities under certain circumstances which would suggest further development is required.

Product flexibility is the “ability to change over to produce a new (set of) products(s) very economically and quickly” (Browne et al., 1984). Essentially this means the ability to change the mix of products in current production, and indeed Carter (1986) refers to this as mix-change flexibility. Sethi and Sethi (1990) rightly state that product flexibility is distinguished from process flexibility on the basis that addition of new parts will “invariably involve some setup”. The purpose of a measure of product flexibility would be to act as a descriptor of this aspect of manufacturing flexibility. Possible usages of a product flexibility measure could occur in a manufacturer’s strategic plan in positioning himself with respect to his products. The criteria of a measure include: capture the dominant dimensions of comparison; be applicable to various manufacturing technologies; increase (decrease) with the increasing (decreasing) number of parts introduced per time period; increase (decrease) with an increasing (decreasing) size of the universe of parts able to be produced without major setup; increase (decrease) with increasing (decreasing) scope of the boundaries of CAD, CAM and CAPP systems; increase (decrease) with the increasing (decreasing) level of system integration of the developmental tools; increase (decrease) with decreasing (increasing) time of design implementation through the system; increase (decrease) with increasing (decreasing) setup time when introducing a new product to the current production portfolio; and increase (decrease) with decreasing (increasing) setup cost when introducing a new product to the current production portfolio. Kochikar and Narendran (1992) propose an introducibility measure which relates to how well a particular product can be made by the system and, therefore, how the system can make a new set of products. Only some of the above criteria were met by Kochikar and Narendran’s measure so further development is required. Specifically, their measure focuses on the processing time of operations so consideration of costs is excluded. Also, their definitions of ‘operation’ would need to be expanded to include the initial design processes in order to satisfy the criteria concerned with designing the product.

Routing flexibility is the phenomenon whereby a part may take a variety of alternative paths through the system, visiting various machines during its manufacture, and thus accommodating changes in machine availability. Machine availability changes if a machine breaks down or if a machine is already engaged in production. The purpose of a routing flexibility measure is to capture the ability of the system to absorb an event such as machine breakdown and continue to operate with minimal strain. The most likely usage would be by operations managers when allocating capacity for particular orders. In addition it is likely to be used during the system investment evaluation phase for comparison among manufacturing equipment alternatives and thus should not be technology specific. A routing flexibility measure should: increase (decrease) with increasing (decreasing) number of routes in the system; increase (decrease) with increasing (decreasing) operation capability of the machines; increase (decrease) with increasing (decreasing) machine availability; increase (decrease) with increasing (decreasing) material handling system versatility; and be comparable among systems of differing sizes. Measures for routing flexibility are plentiful in the literature. Kochikar and Narendran (1992) present a measure which adheres to the criteria listed above. It focuses essentially on a specific part-system example and evaluates the technical possibility of manufacturing at each stage of processing.

Operation flexibility is the “ability to interchange the ordering of several operations for each part type” (Browne et al., 1984). The purpose of operation flexibility is to raise the level of machine utilization by interchanging the sequence of operations or substituting an operation when the originally designated operation is unavailable. The purpose of an operation flexibility measure is to permit managers freedom in deciding how to allocate production capacity in real time. For example, if a specific machine performing a particular task breaks down, a production manager could redirect all the parts waiting for that task to machines performing alternative tasks.
while that machine is repaired. This could only occur if the operation flexibility had been built into the system and part-type design. Of course, this redirection could occur when the system was congested also, thus providing another mechanism for smoothing production. Another purpose of the measure could be as a comparison among alternative designs for a prospective product. An operation flexibility measure should: increase (decrease) with increasing (decreasing) number of interchangeable operations within the part’s process plan as a proportion of the total number of operations; and increase (decrease) with increasing (decreasing) number of machines available to perform the interchanged operations. Kumar (1987) proposes an entropic style operation flexibility measure which meets the criteria well. There are some small problems with respect to interpretation of definitions in Kumar (1987) but otherwise the measure is acceptable.

3. Using the developmental framework model

The framework has been used as a validation tool above. We now propose using it as a development tool to create measures for two of the remaining Browne et al. (1984) flexibility types. As no satisfactory measures were found in the literature for volume and expansion flexibility we attempt these below. Development of a measure for production flexibility will not be tried due to the ambiguity of this flexibility type. A discussion of the role of production flexibility will follow. The measures developed here are consistent with the above criteria, but are not uniquely defined by them. We believe they will prove useful in applications.

3.1. Volume flexibility

Volume flexibility is considered to be the ability to operate efficiently, effectively and profitably over a range of volumes. Greater volume flexibility, *ceteris paribus*, is attained by having lower operating fixed costs, lower variable costs, higher unit prices, or greater capacity. Primarily this means lowering costs, variable or fixed, since often prices are market driven and capacity amount decisions are often chosen in reaction to demand expectations. Characteristically, higher levels of automation result in higher fixed costs and reduced variable costs, whereas the opposite is more common for conventional technologies.

Purpose: The purpose of volume flexibility is to guard against uncertainty in demand levels. Gerwin (1993) suggests the uncertainty is the aggregate product demand and the strategic objective is market share. If an enterprise has higher fixed costs or high variable costs (labor, material) it is more difficult to widely vary profitable production volume compared with an enterprise for which variable or fixed costs are lower. Therefore, the latter firm will be able to weather demand declines and is less likely to dismiss its existing workforce during downturns, whereas the former enterprise will be more susceptible to market vagaries. In the longer term, the company with the more volume flexible production system is the one more likely to endure economic troughs.

Criteria: A volume flexibility measure should:

- not be technology specific, that is, it should be applicable to any technology;
- be comparable among systems of differing volumes;
- increase (decrease) with increasing (decreasing) range of profitable production volumes.

Measures: An obvious first measure is the range over which the system remains profitable. Browne et al. (1984) state that volume flexibility may be measured “by how small the volumes can be for all part types with the system still being run profitably”. We suggest the range over which the system is profitable be defined by a lower limit where the
volume is the break-even point and an upper limit which is the maximum capacity of the production system. The break-even point for the production of a single product is defined as the quantity for which the Average Total Cost is equal to the Marginal Revenue, that is when the profit is zero. We suggest the following as an initial measure for volume flexibility:

$$VF = \frac{V_R}{C_{max}} = \frac{C_{max} - aN_B}{C_{max}},$$

where V_R is the profitability range, C_{max} is the maximum capacity of the system, a is the number of capacity units required per part produced, and N_B is the lower limit of the profitable production range, that is the break-even point. The production capacity limit, C_{max}, is the total production availability. For example, it may be that the available capacity is 8 hours per day $C_{max} = 8$. A given product may require production of 2 hours per part ($a = 2$), so a maximum of four parts could be made each day. The implied constraint is that $ax \leq C_{max}$ for feasible production x. This measure has a theoretical range from 0 to 1, where zero means there is absolutely no scope for demand fluctuation and 1 means that there is scope for demand changes across the entire capacity range. This definition is obviously useful for one product manufacturing scenarios only. To extrapolate this to the multi-product manufacturing setting, we must substitute the break-even analysis for many products.

Break-even occurs when operating income is zero, that is, there is no operating loss or operating profit. Consider the following equation: Sales - Variable costs - Fixed costs = Operating Income, that is $P_uN - C_uN - F = \text{Operating Income}$, where P_u is the unit price, C_u is the unit variable cost, N is the number of units, and F is the fixed operating cost. So for $N = N_B$,

$$P_uN_B - C_uN_BF = 0.$$

The break-even point for a single product, therefore, is

$$N_B = \frac{F}{P_u - C_u} = \frac{F}{b},$$

where $b = P_u - C_u$ is the contribution margin for the product. Consequently, volume flexibility for a single product scenario is

$$VF = 1 - \frac{aF}{bC_{max}}.$$

An implied assumption is that production is feasible somewhere within the available capacity. Specifically, the number of units required to break-even (Fb) is less than the available production for the part (C_{max}/a), so $Fb \leq C_{max}/a$. The one product case is overly restrictive, however, since most manufacturers have a multi-product portfolio. Consider the situation for two products and a single capacity constraint. Here the break-even positions form a line rather than a single point and the positions of maximum capacity also form a line (see Fig. 2). The maximum capacity is specified as a line below which are all the feasible combinations for product mix volumes of x_1 and x_2. Likewise, the break-even is defined as a line on which every combination of x_1 and x_2 creates zero profit. The production volumes are the combinations of x_1 and x_2 values below the maximum capacity line, that is the profitable and unprofitable areas. The feasible production mixes are defined as $a_1x_1 + a_2x_2 \leq C_{max}$ and the break-even line is defined as $b_1x_1 + b_2x_2 = F$ where b_i is the contribution margin of one unit of product i and a_i is the number of capacity units required to make one unit of product i. Therefore, profitable production lies below the maximum capacity line and above the break-even line, as shown in Fig. 2.

As for the single part-type case, it is assumed that $F/b_i \leq C_{max}/a_i$ for all part-types i. In the two product case, this has the diagrammatic effect (see Fig. 2) of requiring the entire break-even line to fall on or below the capacity constraint. Relaxing this assumption would result in a reduction of the profitable production region. For the following volume flexibility measure to remain valid under this relaxation, the unprofitable regions would need to be excluded from consideration and the parameters reevaluated accordingly. We do not consider this relaxation here.

Consequently, unprofitable production lies below the break-even line and the volume flexibility measure may be defined as
VF = 1 − \left(\frac{\text{Area of smaller triangle}}{\text{Area of larger triangle}} \right)^{1/2} \\
= 1 − \left(\frac{(F/b_1)(F/b_2)(1/2)}{(C_{\text{max}}/a_1)(C_{\text{max}}/a_2)(1/2)} \right)^{1/2} \\
= 1 − \frac{F}{C_{\text{max}}} \left(\frac{a_1a_2}{b_1b_2} \right)^{1/2}.

More generally, for n products the break-even is a \((n-1)\) dimensional hyperplane, and the measure is

\[\text{VF} = 1 - \frac{F}{C_{\text{max}}} \left(\prod_{i=1}^{n} \frac{a_i}{b_i} \right)^{1/n} \]

The \(n\)th root is necessary for the measure to remain valid for comparisons among systems that have different numbers of products. If we partition one product into \(n\) separate but identical products, then we would not expect volume flexibility to be affected by this process. Yet

\[\frac{F^n}{C_{\text{max}}} \left(\prod_{i=1}^{n} \frac{a_i}{b_i} \right) \to 0 \quad \text{as} \quad n \to \infty, \]

which follows from the earlier assumption, if \(Fb_i < C_{\text{max}}/a_i\) holds for the additional identical products. Therefore, without the \(n\)th root the VF measure would increase merely by adding to the complexity of the product mix. We see that the VF measure is a reasonable definition. In fact, the VF measure:

- increases (decreases) as \(F\), the fixed operating cost, decreases (increases). This has the effect of lowering (raising) the threshold volume where the product mix becomes profitable and hence, expanding (contracting) the profitable range.
- increases (decreases) as \(C_{\text{max}}\), the maximum capacity, increases (decreases). This increases (decreases) the upper limit of the range, hence expanding (contracting) the profitable range.
- increases (decreases) as the contribution margins, \(b_i\), increase (decrease). This relates to increasing (decreasing) the profitability of one or more product(s) in the mix and hence enabling a more (less) profitable range of production.
- increases (decreases) as the \(a_i\)s decrease (increase). This effectively allows production of more (fewer) of the same products than before by merely using less (more) production capacity.

Table 3 shows the correspondence between the purposes and criteria, and also how well this measure satisfies the criteria. The developmental framework model was particularly helpful in

![Volume flexibility diagram for two products.](image-url)
distilling the objectives of such a measure and appropriate criteria for judging it.

3.2. Expansion flexibility

Expansion flexibility is considered to be the ability to easily add capacity or capabilities to the existing system. Sethi and Sethi (1990) describe it as “the ease with which its capacity and capability can be increased when needed”. Sethi and Sethi (1990) quote several means of attaining expansion flexibility including building small production units, having modular flexible manufacturing cells, having multi-purpose machinery that does not require special foundations and a material handling system that can be more easily routed, having a high level of automation that can facilitate mounting additional shifts, providing infrastructure to support growth, and planning for change.

Consider the investment alternatives open to a company: (1) invest heavily in conventional equipment to cover capacity needs in the foreseeable future, (2) invest in a minimum efficient quantity of conventional capacity and delay additional investment until further market information is gained, (3) invest in a minimum efficient quantity of expansion flexible capacity and delay additional investment until further market information is gained. There are arguments for and against each alternative. For example, the advantage of (1) is that the equipment cost of a complete system is likely to be less than incremental investments that sum to the same capacity. The disadvantages of (1) include the large financial commitment at a single point in time, and the lack of information regarding level and type of demand which may result in inappropriate and over- or under-investment in equipment. A strategic advantage that expansion flexibility endows upon a firm is that a company may not need to purchase all its equipment at the one time but can incrementally invest in the additional capital. This allows the firm to apportion funds in a way over time to minimize financial vulnerability by minimizing large up-front debt or substantially depleting cash reserves. This can somewhat insure against hostile takeover or similar threats. Also the additional incremental investment is likely to be more attuned to the company’s real needs than a single forecast at the initial investment stage.

Hayes and Jaikumar (1988) argue against what they call “irrational incrementalism’’ with regard to CIM systems. They state that the benefits a CIM system can deliver can only result if the entire system is in place and operating. We argue that the minimum efficient quantity in expansion flexible systems includes all the infrastructure which constitutes a CIM system. The additional investments we speak of are ones of additional capacity or production capabilities only.

Expansion flexibility is intended to permit a company to expand production progressively, rather than purchase all equipment upfront which may place a prohibitive burden on the company. A firm could purchase capacity as required. Initially, the company could purchase enough capacity to provide minimum efficient production, and as markets expand and market share increases, the company could then purchase any additional ca-

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Criteria</th>
<th>Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>To guard against aggregate demand fluctuations</td>
<td>Should increase (decrease) with an increasing (decreasing) range of profitable volumes</td>
<td>Yes</td>
</tr>
<tr>
<td>To be applicable to a variety of production technologies</td>
<td>Should not include aspects particular to specific manufacturing systems or technologies</td>
<td>Yes</td>
</tr>
<tr>
<td>To gauge the range of profitable volumes for a multi-product firm</td>
<td>Should permit a direct comparison between single product and multi-product firms</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Should be able to compare systems of differing volumes and capacities</td>
<td>Yes</td>
</tr>
<tr>
<td>To be used as a quick reference for operational managers.</td>
<td>Should be easily calculable</td>
<td>Yes</td>
</tr>
</tbody>
</table>
capacity to meet new demands. These new capacity acquisitions could be undertaken in the knowledge that the implementation and integration process is likely to be less disruptive than it might otherwise be if expansion flexibility were not present. Also, the additional capacity may be purchased with better information than we may have at the initial investment stage.

Purpose: A measure of expansion flexibility would permit senior management to decide between investments in a non-expansion flexible (conventional) system and an expansion flexible system in a capacity-planning context. As such, having a numerical monetary amount could prove useful in direct comparisons of the different manufacturing technologies. The benefit of a conventional system is that the upfront costs, per capacity unit, are likely to be less than an expansion flexible system of the same size. The drawback of a conventional system is that the integration time and cost of additional capacity investments are higher than for an ‘equivalent’ flexible capacity.

Criteria: An expansion flexibility measure should: capture the dominant dimensions of comparison; not be technology specific; allow comparisons between large upfront investments of conventional systems and smaller incremental investments of expansion flexible capacity; and not limit the number of stages of investment in the expansion flexible scenario.

Measures: There is little in the literature regarding measures of expansion flexibility. Stecke and Raman (1986) suggest a measure of expansion flexibility would be a function of “the magnitude of the incremental capital outlay required for providing additional capacity: the smaller the marginal investment, the greater the expansion flexibility”. However, no explicit function is proposed. Sethi and Sethi (1990) cite a measure of Jacob which depends on a ratio of differences between long-term profits of various systems. Wirth et al. (1990) propose that the value of flexibility in decision analysis can be measured by the difference between the Expected Monetary Values (EMVs) of a decision with information and a decision without information. It is assumed this information is gained by delaying a decision. This approach was also the basis of Mandelbaum (1978) work into flexibility in decision making. We extend this line of thinking to expansion flexibility. The difference between the EMV of the flexible option (EMVF) and the EMV of the conventional option (EMVC) results in the expansion flexibility measure (EF), i.e.

$$EF = EMVF - EMVC.$$

This model is, of course, highly dependent on the comparison between the two systems. It does not provide a ‘stand-alone’ measure of expansion flexibility whereby a system can be evaluated on its own merits. It does, however, capture the primary attribute of expansion flexibility, that is, its advantage over conventional systems. If the expansion flexible system offers lower costs than the conventional system, EF will exceed 0. An advantage of this measure is that it is measured in dollar, or currency, terms. This can assist in a financial evaluation and in a presentation to a board of directors who are used to dealing primarily with monetary figures. By the same token, however, the transferability of the measure to other industries and circumstances is lost since the proportions of the investment are obvious. The model we formulate is deliberately limited for illustrative purposes. It could be easily extended to accommodate several investment periods rather than just two. It could also accommodate additional investments in the conventional equipment, although it is trivial to show that if the marginal cost of additional conventional capacity is greater than that of flexible capacity, the flexible capacity alternative will always have a superior EMV. The marginal cost of additional conventional capacity is greater than that of the flexible capacity since the latter technology is designed for integration into existing systems, using modular equipment designs. The conventional capacity is not designed to do this and therefore, the cost of additional capacity includes the implementation and integration costs, which boost the cost above that of the flexible equivalent.

Our model assumes: contribution margin, and hence operating costs, are equal for each of the technologies; only a single product is manufactured; the manufacturer can produce as many units as demand dictates or capacity allows, whichever is the smaller; capacity may be purchased in
continuous amounts; in period 1, demand is unknown but an estimate is evaluated by a weighted sum of demand estimates; the weightings are probabilities of various ‘world states’ of demand for the product; demand is perfectly known at period 2, and managers can purchase an additional amount of capacity to exactly meet the known demand; and the manufacturer is risk neutral, and hence uses the expected monetary value criterion as a basis for financial evaluation. This, in effect, means the flexible option will always manufacture to demand, whereas the conventional option will manufacture as much as demand or maximum capacity will allow.

Assume a demand set D_1, D_2, \ldots, D_m where $D_1 \leq D_2 \leq \cdots \leq D_m$ with associated probabilities p_1, p_2, \ldots, p_m, for some odd integer, $m > 0$. If the conventional capacity purchased is C_C, then

$$\text{EMV}_C = \sum_{i=1}^{m} p_i \pi \min(D_i, C_C) - k_C C_C,$$

$$\text{EMV}_F = \sum_{i=1}^{m} p_i \pi D_i - \sum_{i=1}^{m} p_i k_F D_i,$$

where π is the contribution of the product, k_C is the unit acquisition cost of the conventional capacity, and k_F is the same for the flexible capacity. Note, appropriate discount factors can be built into the acquisition costs, without loss of generality.

By plotting EMV_C against C_C, as in Fig. 3, we can see that the maximum EMV_C does not necessarily occur at the weighted sum of the demands but could be at one of the demand levels. The probability distribution used to create the curve in Fig. 3 was discrete, symmetrical and increasing to.
a maximum at the mean (for an odd integer, \(m \)). This distribution was used to resemble a normal distribution. The shape of the curve depends on the shape of the probability distribution of the demands. Whereas the mean of the demand probability distribution was 750 in this simple numerical example, the largest EMVC was observed at \(C = 810 \).

Fig. 4 shows the demand values with their associated probabilities and where \(C \) lies in the continuum. Suppose \(C \) assumes a value between \(D_k \) and \(D_{k+1} \). This is valid because the choice of \(C \) will be determined by maximizing EMVC as follows. From the above definition, we have

\[
\text{EMVC} = \pi \sum_{i=1}^{k} p_i D_i + \pi C \sum_{i=k+1}^{m} p_i - k C C.
\]

Now, \[
\frac{\partial \text{EMVC}}{\partial C} = \pi \sum_{i=k+1}^{m} p_i - k C.
\]

Hence, if \(\pi \sum_{i=k+1}^{m} p_i - k C > 0 \) then \(C \geq D_{k+1} \), and if \(\pi \sum_{i=k+1}^{m} p_i - k C < 0 \) then \(C \leq D_k \), where \(1 \leq k \leq m - 1 \). Thus,

\[
C^* = D_j \text{ where } \pi \sum_{i=j+1}^{m} p_i \leq k C < \pi \sum_{i=j'}^{m} p_i,
\]

where \(C^* \) is the optimal level of conventional capacity. (We assume, without loss of generality, that \(k C < \pi \) and hence \(1 \leq j' \leq m \). If \(k C > \pi \) no capacity should be purchased. If \(j' = m \) the left term in the inequality for \(k C \) above is read as 0.)

Now, assume further that the discrete demand distributions are constructed as in Fig. 5. So \(p_j = \sum_{i=1}^{j} x_i \). By inspection we can see that (without loss of generality) demand can assume \(2n + 1 \) values \((m = 2n + 1) \), and we can scale the distribution so that \(D_i = \mu + i - n - 1 \) for \(i \in \{1, 2, \ldots, 2n + 1\} \).

So

\[
x_1 + (x_1 + x_2) + \cdots + \sum_{i=1}^{n+1} x_i + \cdots + (x_1 + x_2) + x_1 = 1
\]

i.e.

\[
\sum_{i=1}^{n+1} x_i (2n - 2i + 3) = 1.
\]

Also,

\[
\frac{\sigma^2}{2} = x_1 \sum_{j=1}^{n} j^2 + x_2 \sum_{j=1}^{n-1} j^2 + \cdots + x_n \sum_{j=1}^{1} j^2
\]

\[
= \frac{n(n+1)(2n+1)}{6}
\]

\[
+ x_2 \frac{(n-1)n(2n-1)}{6} + \cdots + x_n \frac{1 \cdot 2 \cdot 3}{6}
\]

and so,

\[
\sigma^2 = \sum_{i=1}^{n} \frac{(n-i+1)(n-i+2)(2n-2i+3)}{3},
\]

where \(\sigma^2 \) is the variance of the demand distribution. Let us denote the value of EMVC where \(C = C^* \) by EMVC\(C^* \). Now EF = EMVC\(F \) - EMVC\(C^* \). Assume, for simplicity, that \(\pi / k C = 2 \) so that \(C^* = \mu = D_{n+1} \).

Fig. 4. Demand line showing \(C \) between \(D_k \) and \(D_{k+1} \).
Proposition 1. \(\sigma^2 \) is maximized for the discrete uniform distribution. That is,

\[
x_i = \frac{1}{2n+1}, \quad x_j = 0 \quad \text{for } j = 2 \text{ to } n+1.
\]

Proof. Consider the following linear program:

\[
\begin{align*}
\max & \quad x_1 \frac{n(n+1)(2n+1)}{3} + \cdots + x_n \frac{1 \cdot 2 \cdot 3}{3} \\
\text{s.t.} & \quad x_1(2n+1) + x_2(2n-1) + \cdots + 3x_n + x_{n+1} = 1 \\
& \quad x_i \geq 0 \text{ for all } i.
\end{align*}
\]

By the theory of linear programming, there is at most one variable greater than zero in the solution to this linear program with one constraint. Clearly, \(x_1 \) has the highest ratio of objective function coefficient to constraint coefficient of all the variables:

\[
\frac{(n-i+1)(n-i+2)(2n-2i+3)}{3(2n-2i+3)}
\]

so, \(x_1 = 1/(2n+1), \quad x_2 = \cdots = x_{n+1} = 0. \)

Now,

\[
\frac{\text{EMV}_{C^*}}{\pi} = x_1(\mu - n) + (x_1 + x_2)(\mu - n + 1) + \cdots + (x_1 + \cdots + x_n)(\mu - 1) + \mu \left(\frac{1}{2} + \frac{1}{2}(x_1 + \cdots + x_{n+1}) \right) - \frac{1}{2}\mu
\]

\[
= n\mu x_1 + (n-1)\mu x_2 + \cdots + 1 \cdot \mu x_n + \frac{1}{2}(x_1 + \cdots + x_{n+1})\mu
\]

\[
= \left(2n+1 \right) x_1 + \left(2n \right) x_2 + \cdots + x_n \mu
\]

\[
= \left(\frac{2n+1}{2} \right) \mu
\]

where the last equality follows from Eq. (1). Now,

\[
\text{EMV}_F = (\pi - k_F) \sum_{i=1}^{2n+1} p_i D_i = (\pi - k_F)\mu,
\]

which is a constant, independent of all \(x_i \). So,

\[
\frac{\pi}{\pi} = x_1 \frac{n(n+1)}{2} + x_2 \frac{(n-1)n}{2} + \cdots + x_{n+1} \frac{1 \cdot 2 \cdot 3}{2} - \text{constant}.
\]

Given \(\sigma^2 \), we seek to maximize \(\text{EF} \). Suppose

\[
\text{EF}^* = \max_{x_i, \sigma^2 = k} \text{EF}.
\]

Proposition 2. \(\text{EF}^* \) is a monotonically increasing function of \(\sigma^2 \).

Proof. We have

\[
\max \quad x_1 \frac{n(n+1)}{2} + x_2 \frac{(n-1)n}{2} + \cdots + x_n \frac{1 \cdot 2 \cdot 3}{2} = f,
\]

s.t.

\[
x_1(2n+1) + x_2(2n-1) + \cdots + 3x_n + x_{n+1} = 1,
\]

\[
x_1 \frac{n(n+1)(2n+1)}{3} + \cdots + x_n \frac{1 \cdot 2 \cdot 3}{3} = \sigma^2
\]

and \(x_i \geq 0 \) for all \(i \).

So we must show for this linear program that the marginal price for the second constraint is greater than or equal to zero. Since there are two constraints, there are at most two variables greater than zero in the optimum solution. Let us consider three cases.

Case 1: \(x_{n+1} > 0 \) at optimum, for some \(\sigma^2 \). Suppose the other positive variable is \(x_s \). So \(x_s(2n-2s+3) + x_{n+1} = 1 \) and
\[\alpha_s(n-s+1)(n-s+2)(2n-2s+3) = \sigma^2. \]

Therefore
\[f_{\text{max}} = \alpha_s(n-s+1)(n-s+2) \]
\[= \frac{3\sigma^2}{2(2n-2s+3)}. \]
an increasing function of \(\sigma^2 \). So, provided \(\varepsilon \) is sufficiently small, increasing \(\sigma^2 \) to \(\sigma^2 + \varepsilon \) increases \(f_{\text{max}} \).

Case 2: \(\alpha_{s+1} = 0 \) for some \(\sigma^2 \). Suppose \(\alpha_s, \alpha_t \neq 0, 1 \leq s < t \leq n \).

\[K_s\alpha_s + K_t\alpha_t = 1, \quad m_s\alpha_s + m_t\alpha_t = \sigma^2, \]
\[f = p_s\alpha_s + p_t\alpha_t, \]

where \(K, m, \) and \(p \) are constants from Eqs. (1) and (2), and the mathematical program under examination. Now increase \(\sigma^2 \) to \(\sigma^2 + \varepsilon \), where \(\varepsilon \) is small enough so that \(\alpha_s, \alpha_t \) remain greater than zero. Now defining \(\Delta \alpha_s = \alpha_s(\sigma^2 + \varepsilon) - \alpha_s(\sigma^2) \) and similarly for \(\Delta \alpha_t \),

\[\left[\begin{array}{c} K_s \\ m_s \\ \alpha_s \\ \alpha_t \end{array} \right] \left[\begin{array}{c} \Delta \alpha_s \\ \Delta \alpha_t \end{array} \right] = \left[\begin{array}{c} 0 \\ \varepsilon \end{array} \right]. \]

By Cramer’s rule,
\[\Delta \alpha_s = \frac{-\varepsilon K_t}{K_s K_t - m_s m_t}, \quad \Delta \alpha_t = \frac{\varepsilon K_s}{K_s K_t - m_s m_t}, \]

\[K_s \\ m_s \\ \alpha_s \\ \alpha_t \]
\[\frac{K_s}{m_s} = \frac{3}{(n-s+1)(n-s+2)} < \frac{K_t}{m_t} \text{ since } s < t. \]

Therefore
\[\left| \begin{array}{cc} K_s & K_t \\ m_s & m_t \end{array} \right| < 0, \quad \text{so } \Delta \alpha_s > 0, \Delta \alpha_t < 0, \]

\[\Delta \alpha_s p_s + \Delta \alpha_t p_t = \frac{-\varepsilon K_t p_s + \varepsilon K_s p_t}{K_s K_t - m_s m_t}, \]

\[\Delta \alpha_s = \frac{(n-s+1)(n-s+2)}{2(2n-2s+3)}. \]

Let \(1 + n - s = x \) and so
\[\frac{p_s}{K_s} = \frac{x(x+1)}{2(2x+1)} \]
\[\frac{d}{dx} \frac{x(x+1)}{2(2x+1)} = \frac{(2x+1)^2 - 2(x^2+x)}{(2x+1)^2} = \frac{2x^2 + 2x + 1}{(2x+1)^2} > 0. \]

So \(\left(\frac{p_s}{K_s} \right) \) is a decreasing function of \(s \), which leads to
\[\frac{p_s}{K_s} > \frac{p_t}{K_t} \]
and so \(p_s K_t - p_t K_s > 0. \]

It follows from Eqs. (4) and (5) that \(\Delta \alpha_s p_s + \Delta \alpha_t p_t > 0 \) and hence \(f_{\text{max}} \) increases with \(\sigma^2 \) for this case as well.

Case 3: \(\alpha_t = 1/(2n-2s+3) \) and all other \(\alpha_s = 0 \). The argument for Case 2 can be slightly modified to show that when \(\sigma^2 \) is increased to \(\sigma^2 + \varepsilon \), for sufficiently small \(\varepsilon \), \(\Delta \alpha_s < 0 \) and \(\Delta \alpha_t < 0 \) for some \(s < t \) and \(f_{\text{max}} \) increases with \(\sigma^2 \).

Propositions 1 and 2 suggest that the expansion flexibility measure is greater in situations of greater risk, or variance. Fig. 6 shows the relationship of \(\text{EF}^* \) vs. \(\sigma^2 \) for a sample discrete demand distribution numerically. For example, we approximate a normal demand distribution by a discrete one, setting \(m = 11 \) and letting the probability distribution for demand be symmetric with mean 750 and \(p_t \) increasing from demand values 400–750 and decreasing from demand values 750–1100. During this exercise, a constant mean demand of 750 was maintained. If we now vary \(\sigma^2 \) to make the behavior of \(\text{EF}^* \) shown in Fig. 6.

The results, summarized in Fig. 6, were obtained by calculating \(\text{EF} \) for various values of the variance of the probability distribution. The set of \(\text{EF} \) values against variance (Fig. 6) was built by fixing the variance of the distribution for any one case and using an optimizing algorithm within a spreadsheet application to maximize \(\text{EF} \). Since many probability distributions can exist for a given value of variance, some intervention was required by setting initial ‘starting’ positions of the distribution in order to achieve the maximal values of \(\text{EF} \) for each variance value. Therefore, both the
propositions and the numerical experiments suggest EF increases monotonically with variance. This implies that EF is increasingly important as the certainty regarding the demand levels diminishes. In fact, EF is maximized for a uniform demand probability distribution, which represents the highest uncertainty under the 'normality' constraints mentioned earlier. (Removing these 'normality' constraints results in EF being maximized when all the probability is allocated to the extreme low and high demand values and none in between. This scenario, however, is unrealistic; it would be very unusual for the knowledge about the demand to be so polarized.)

In conclusion, the model captures the dominant characteristic of expansion flexibility, hedging against unknown demand. The expansion flexible capacity returns a higher EMV than the conventional capacity as the variance, or uncertainty, of the probability demand distribution increases. This means it would be worthwhile delaying an investment decision, or investing only part of the necessary capacity, when there is higher demand uncertainty, until a time when demand levels are more certain. This certainty may take the form of success in contract tendering, a change in government investment or protection policy, or market success of an associated (that is, positively demand correlated) product.

3.3. Production flexibility

Production flexibility was included in the original flexibility taxonomy by Browne et al. (1984). There has been little debate over its role in the flexibility arena. Browne et al. and others imply it represents the culmination of the extents or effects of the other seven flexibility types. An immediate and obvious measure is simply the sum of previous seven flexibility measures. This, however, does not account for the varying importance of different flexibility types in different production systems, under different business circumstances. An improvement could be a weighted sum to account for these differing circumstances and situations. However, this still requires that all flexibility measures be in the same units and leaves other
questions unanswered: Are these seven flexibility types the only ones that are needed to fully describe flexibility in an organization? Who decides the relative importance (weightings) of the flexibility types? What is the role of production flexibility? How are these flexibility types related?

It appears that production flexibility is an attempt to capture the holistic aspects of flexibility. Previous authors (see Chung and Chen, 1989) have pursued a similar line of thought although significant gaps still exist in our understanding. Two items which may extend our understanding of production flexibility are (1) an examination of the relationships among flexibility types and (2) a listing of the “dimensions of comparison”. The former is pursued in the next section and the latter was discussed in Section 2.1.

4. Relationships among flexibility types

The real challenge for managers and researchers are not only to appreciate the existence of a variety of flexibility types but also the existence of relationships and trade-offs among them. It is all very well to refer to a required level of a particular flexibility but the non-monetary costs of attaining this flexibility should be comprehended too. These non-monetary costs could include a decrease in other flexibility types which in turn could affect production objectives (e.g. machine utilization), service objectives (e.g. delivery timeliness) or market objectives (e.g. product availability). Understanding the relationships among flexibility types is paramount for understanding the managerial task required to manage enterprise flexibility. Given this, it is perhaps surprising there has been so little research into these relationships or trade-offs. Of course, one reason for this may be that the relationships are complex. Some relationships seem apparent, and we will discuss some of these, but others are not obvious and change with manufacturing systems and usage.

Browne et al. (1984) presented a diagram which indicated the hierarchical relationship among flexibility types (see Fig. 7). The arrow indicates “necessary for”. Therefore, machine flexibility is necessary for product, process and operation flexibilities and so on. This implies that there is, for example, a positively correlated and supportive relationship of machine flexibility to product flexibility. As Browne et al. state, ideally all FMSs would possess the greatest amount possible of all these flexibility types but, of course, the cost would be prohibitive. Therefore, decisions regarding amounts desired and required by the company need to be made and information regarding the tradeoffs and relationships among the flexibility types will aid these decisions. Gupta and Goyal (1992) are the only authors who have carried out a study using simulation into the relationships among flexibility types. Other authors have mentioned relationships they have recognized, but to date, the Gupta and Goyal study is the only one that attempts to examine all the relationships in a comprehensive manner. These authors use computer simulation to examine the effect of different system configurations and different loading/scheduling strategies on various performance parameters. However, the performance parameters chosen are machine idle time (MIT) and job waiting time (JWT) which, we believe, places an overemphasis on the time or response aspects of manufacturing flexibility. Also we believe that by concentrating the analysis on these two parameters alone, some tenuous conclusions are drawn. Gupta and Goyal draw conclusions based purely on changing configurations and the subsequent effect on these performance parameters. For example, they state (p. 532): “let us increase the job types to ten. A statistically significant difference will indicate a change in machine idle time. If the machines

Fig. 7. Hierarchical relationship between flexibility types (source: Browne et al., 1984).
incur a higher idle time while processing ten job types then it can be inferred that an increase in product variety has adversely affected volume flexibility. It may be noted that increasing product variety implies an inherent increase in the product flexibility of the manufacturing system. The system would not be able to process more job types otherwise. This demonstrates an inverse relationship between product flexibility and volume flexibility”. Following such logic, Gupta and Goyal (1992) suggest several relationships. They also examine the effects of several loading strategies and dispatching strategies. They conclude by stating: “we would like to state that this study is based on simulation and therefore it is assuming in nature. The results are system specific and may not be generalized to other systems”. This indicates some reservations these authors had. The primary outcomes of the Gupta and Goyal (1992) study is the effect of different loading/scheduling schemes on machine idle time and job waiting time and secondly, upon some flexibility types.

Below, we examine some relationships among flexibility types. This work is preliminary rather than definitive and we believe much further work will be required before we gain a thorough knowledge of these relationships. We will discuss only a limited number of these relationships, with an objective of initiating further work in the area. Also, our work is qualitative and indicative of the general trend of the relationship rather than an absolute statement. A comprehensive, empirical study into the tradeoffs and relationships is beyond the scope of this paper but hopefully it will, in combination with model building and simulation work, lead to a fuller understanding. Flexibility relationships, we imagine, will be closely intertwined with managerial issues and substantial managerial insights will be developed. After our discussion, we will present a table which will summarize this qualitative discussion of relationships among the flexibility types.

Machine vs process: Buzacott (1982) suggests there should be a positive relationship between these two flexibility types, that is, as machine flexibility increases so does “job” flexibility. He states that “in systems that are inadequately controlled so that it is not possible to exploit diversity in job routing it is possible for machine flexibility to decline with job flexibility”. He proposes that the capabilities that endow a machine with machine capability also complicate it to the degree where machine reliability is a problem. Also these capabilities will contribute to a lowering of machine efficiency and hence, machine flexibility. He suggests for a single machine, machine flexibility is mostly independent of process flexibility.

Generally, we agree that a positive relationship exists here since the capabilities which underpin both flexibility types are common, namely, CNC capabilities, tool magazines and automatic tool loaders. The ability to change between operations (machine flexibility) directly assists in the ability to change between different products (process flexibility). Intuitively, an increase in the range of operations able to be performed by a machine will expand the range of products that can be produced on that machine. There are other factors which drive process flexibility and therefore there is not a directly proportional relationship, especially since machine flexibility relies heavily on the mode of usage. Several authors (Browne et al., 1984; Sethi and Sethi, 1990) have suggested that machine flexibility is a foundation and prerequisite for process flexibility.

Machine vs product: Again, machine flexibility is acknowledged as a prerequisite for product flexibility, as it provides the foundation capabilities, that is performing several operations on the one machine. Just as this permits changing between products (process flexibility) because different products typically have different operations in their process plans, machine flexibility permits the introduction of additional products to the current product mix. This means that as machine flexibility increases, that is more operations are able to be conducted on the machine, there is a greater likelihood that the machine will be able to undertake the production of newly introduced parts, thus reflecting a higher product flexibility. Gupta and Goyal (1992) suggest that increasing the number of machines enhances the ability of the system to make “changes required to produce a given set of part types”, which is machine flexibility, and also lowers the waiting times for jobs, which therefore supplements “the system’s capability to change-
over to produce a new part, thus improving product flexibility”. As mentioned previously, some of Gupta and Goyal’s (1992) deductions could be called into question, although their conclusions regarding the flexibility relationships are generally sound.

Machine vs operation: We believe machine flexibility underpins operation flexibility. By having machine flexibility, the potential for the usage of operation flexibility is amplified, although the majority of operation flexibility is drawn from the design of the part and the subsequent interchangeability of tasks. Given that any given part has the innate capabilities of operation flexibility, an increased machine flexibility will permit a greater usage of the potential. However, the converse is not true; an enhanced potential operation flexibility of a part will not increase the ability of a machine to perform additional operations. This, in fact, reflects the directional hierarchy of Fig. 7 whereby machine flexibility is “necessary for” operation flexibility, but the direction of the arrow is not reversible.

Routing vs operation: Several authors have commented that these two flexibility types are closely related but few have discussed this at length. The relationship again is unidirectional. Increasing the ability to route and reroute a part through a system, that is routing flexibility, will permit an increased ability to use the operation flexibility of a part by allowing the part to visit various machines when the sequence of tasks is changed. Providing more routes in the system allows greater versatility in task resequencing. However, endowing a part with greater operation flexibility does not, in turn, permit greater ability to reroute a part. This reflects the Browne et al. (1984) hierarchy.

Routing vs volume: Gupta and Goyal (1992) state that they interpret an increase in the MIT as a reduction in the volume flexibility of the system, since volume flexibility is the ability to operate profitably at different production volumes and if there is a higher MIT, then the system is not operating as profitably as it might be. This is, we believe, a misinterpretation of the definition of volume flexibility. Volume flexibility is the extent of the production range over which the system can operate profitably and a particular usage showing a lower machine utilization does not reflect a change in the volume flexibility. We believe this relationship could be related in that an increase in routing flexibility increases the maximum potential system capacity and hence increases volume flexibility. This is because machines that were not previously connected are now joined thus increasing the maximum potential system capacity. Another possibility is that the additional infrastructure (for example: AGVs, defined routes) that is associated with an increase of routing flexibility could in fact increase the fixed cost component of the cost structure and therefore, subsequently decrease volume flexibility, depending on how fixed costs are calculated. Therefore, it would seem that this relationship could certainly be nonlinear. Although Gupta and Goyal (1992) do not explicitly state this finding of non-linearity, they find that smaller system configurations produce a positive relationship between routing and volume flexibility and larger system configurations produce a negative relationship. A possible cause for this may be that for larger configurations, the fixed cost of the routing infrastructure could overwhelm the utilization benefits and the relationship switches from a positive to a negative orientation. Gupta and Goyal (1992) do not provide an explanation for most of the results they observed.

In summary, there has been little thorough investigation into the relationships among flexibility types, even though there is great potential for managerial insights into flexibility competitiveness. We have collected some of the “accepted” relationships and provided them in Table 4. This is not a complete listing and the blank spaces suggest an opportunity for further work. Further, these relationships will vary greatly according to a variety of environmental and usage factors.

5. Concluding remarks

This paper has presented a framework to facilitate the development of flexibility measures by directing the focus onto the purposes and criteria of the measure. This development framework enables existing measures to be evaluated, as shown
for machine, process, product, routing, and operation flexibility. It also permits development of new measures as shown for volume and expansion flexibility. There are several pairs of ‘dimensions of comparison’ which can also aid this development by furthering the understanding of these flexibility types. We also raise the issue of relationships among flexibility types. Little work has been done in this area so far but we believe it will be of substantial importance in the future to the study of manufacturing flexibility.

References
