Lecture 13: CAPM continued

Questions: How are risk and return related?
- What kinds of risk do we care about?
- For bearing more risk, how much extra return do we get?

Readings:
-- Brealey and Myers, Chapters 7 and 8
-- Reader, Chapters 13 and 14 (yes, both chapter 14’s…)
Portfolios of 2 stocks

![Graph showing portfolios of 2 stocks with E(R) on the y-axis and Sigma on the x-axis.]

© M. Spiegel and R. Stanton, 2000 2 U.C. Berkeley
Portfolios of more than 2 stocks

Minimum variance frontier
Top half is the “efficient frontier”
Might an investor pick this portfolio?
Combining risky portfolios with the riskless asset

Note: Every investor chooses the same risky portfolio, S.
What is portfolio S?

- Suppose S contained no IBM. What would happen?
- Suppose S contained 90% Pets.com? What would happen?
- In *equilibrium*, when we add together everyone’s holdings of portfolio S, we must have every share in every company.
- So S must be the *market portfolio*, M.
 - A portfolio that contains every investment in the economy in proportion to their total value.
 - Denote its return r_m.
We already have one key finding: All investors ought to split their money between the **market portfolio** and the risk-free asset.

In practice, buy an **index fund**, or an **exchange traded fund (ETF)**, such as a **SPDR**.

These are funds designed to track a market **index**.
- Most commonly used index: S&P 500 (**^SPX**)
 - ETF: **SPY**
- A broader index is the Wilshire 5000 (**^TMW**)
 - ETF: **WFIVX**
 - 5,000 stocks vs. 500
 - S&P stocks represent c. 77% of the Wilshire 5000 by value

Is the Wilshire 5,000 really the market portfolio?
Wilshire 5,000 vs. S&P 500

Exchange provides no volume data.

© M. Spiegel and R. Stanton, 2000
What about our original question?

- How does this help with our original question, though: how to calculate r?
- We’re almost there…
Mathematically, the market portfolio being the tangency portfolio tells us that for any asset i,

$$r_i = r_f + \frac{\text{Cov}(\tilde{r}_i, \tilde{r}_m)}{\text{Var}(\tilde{r}_m)} \left[E(\tilde{r}_m) - r_f \right],$$

$$= r_f + \beta_i \left[E(\tilde{r}_m) - r_f \right].$$

- The **Capital Asset Pricing Model (CAPM)**.
- This is the relationship between risk and return we have been looking for.
The CAPM

- Expected return is related to the stock’s “beta”
 - Depends on covariance with the market: Market Risk
 - Does not depend on its variance: Firm Specific Risk
 - Remember our diversification example…

\[
\begin{align*}
 r_i &= r_f + \beta_i [E(\tilde{r}_m) - r_f], \\
 \beta_i &= \frac{\text{Cov}(\tilde{r}_i, \tilde{r}_m)}{\text{Var}(\tilde{r}_m)}.
\end{align*}
\]
The Security Market Line

Do all stocks lie on the Security Market Line?
Capital Market Line versus Security Market Line

<table>
<thead>
<tr>
<th>Capital Market Line</th>
<th>Security Market Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Axis</td>
<td></td>
</tr>
<tr>
<td>Expected return</td>
<td>Expected Return</td>
</tr>
<tr>
<td>Horizontal Axis</td>
<td></td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>Beta</td>
</tr>
<tr>
<td>Line shows</td>
<td></td>
</tr>
<tr>
<td>Portfolios mixing optimal portfolio with risk-free asset</td>
<td>Individual stock expected return as function of its Beta</td>
</tr>
<tr>
<td>What lies on the line?</td>
<td></td>
</tr>
<tr>
<td>Only combinations of optimal portfolio and r_f</td>
<td>All stocks</td>
</tr>
</tbody>
</table>

Individual stock expected return as a function of its Beta

Line shows:
- **Capital Market Line**
 - Portfolios mixing optimal portfolio with risk-free asset
- **Security Market Line**
 - All stocks

What lies on the line?
- **Capital Market Line**
 - Only combinations of optimal portfolio and r_f
- **Security Market Line**
 - All stocks
What is the expected return on a stock with $\beta = 0$?
- Answer is r_f: Same return as risk-free asset! Why?
- Think about insuring lots of houses against fire.
 » Each individually is risky, but
 » When you diversify by insuring lots of houses, overall portfolio becomes riskless.

What is the expected return on a stock with $\beta < 0$?

If $\beta < 0$, then $r_i < r_f$! You’d accept a return lower than the risk-free rate? Why?