The Macroeconomics of Shadow Banking

Alan Moreira
Yale SOM

Alexi Savov
NYU Stern & NBER

January, 2016
Shadow banking, what is it good for?

Three views:

1. Regulatory arbitrage
 - avoid capital requirements, exploit implicit guarantees

2. Neglected risks
 - package risky investments as safe, pass on to unsuspecting investors

3. Liquidity transformation
 - create money-like liquid instruments from a broader set of assets
Shadow banking, what is it good for?

Three views:

1. Regulatory arbitrage
 - avoid capital requirements, exploit implicit guarantees

2. Neglected risks
 - package risky investments as safe, pass on to unsuspecting investors

3. Liquidity transformation
 - create money-like liquid instruments from a broader set of assets

All reform proposals take an implicit stance
The liquidity transformation view of shadow banking

1. Shadow banking turns risky assets into liquid liabilities
 ⇒ expands credit to the economy and liquidity provision to households/institutions

2. Bigger booms, deeper busts
 ⇒ tradeoff between growth and fragility

Moreira and Savov (2015)
Our framework

1. Investors demand liquid securities to consume in high marginal-utility states (liquidity events)
 - liquidity \Leftrightarrow low shock exposure \Leftrightarrow overcollateralization

2. Intermediaries invest in assets and finance with
 - money safe \Rightarrow always liquid (e.g. government money market fund)
 - equity residual \Rightarrow illiquid (e.g. “toxic waste” CDO tranche)
 - shadow money safe except in a crash \Rightarrow liquid except in a crash (e.g. Financial CP, ABCP, private-label repo, etc.)

Moreira and Savov (2015)
Our framework

1. Investors demand liquid securities to consume in high marginal-utility states (liquidity events)
 - liquidity ⇔ low shock exposure ⇔ overcollateralization

2. Intermediaries invest in assets and finance with
 - money safe ⇒ always liquid (e.g. government money market fund)
 - equity residual ⇒ illiquid (e.g. “toxic waste” CDO tranche)
 - shadow money safe except in a crash ⇒ liquid except in a crash
 (e.g. Financial CP, ABCP, private-label repo, etc.)

3. Collateral constrains liquidity provision:

\[
\text{Money} \times 1 + \text{Shadow money} \times \left(1 - \text{Crash} \text{ loss} \right) \leq \text{Value of assets in a crash}
\]

- tradeoff between quantity and fragility of the liquidity supply

4. Uncertainty drives demand for fragile vs. crash-proof liquidity

Moreira and Savov (2015)
MODEL ROADMAP

1. Static model for core mechanism, analytical expressions
2. Dynamic model for amplification, cycles, and effects of policy
1. Three dates, 0, 1 and 2. Investors subject to liquidity events

\[U_0 = \max E_0 [z_1 C_1 + C_2] \]

- \(z_1 \in \{1, \psi\} \), where \(z_1 = \psi \) privately-observed liquidity event
- \(z_1 = \psi \) with probability \(h \), i.i.d. across investors
Static model: preferences, endowment, and information

1. Three dates, 0, 1 and 2. Investors subject to liquidity events

\[U_0 = \max E_0 [z_1 C_1 + C_2] \]

- \(z_1 \in \{1, \psi\} \), where \(z_1 = \psi \) privately-observed liquidity event
- \(z_1 = \psi \) with probability \(h \), i.i.d. across investors

3. Promises require collateral. Endowed with asset that pays

\[Y_2 = \begin{cases}
1 + \mu_Y, & \text{prob. } 1 - \lambda_0 \text{ (normal times)} \\
1 - \kappa_Y, & \text{prob. } \lambda_0 \text{ (crash)}
\end{cases} \]

- normalize \(E_0 [Y_2] = 1 \), \(\lambda_0 \) measures uncertainty
- normalize \(q_0 = 1 \), assets are the numeraire
Static model: preferences, endowment, and information

1. Three dates, 0, 1 and 2. Investors subject to liquidity events

$$U_0 = \max E_0 [z_1 C_1 + C_2]$$

- $z_1 \in \{1, \psi\}$, where $z_1 = \psi$ privately-observed liquidity event
- $z_1 = \psi$ with probability h, i.i.d. across investors

3. Promises require collateral. Endowed with asset that pays

$$Y_2 = \begin{cases}
1 + \mu_Y, & \text{prob. } 1 - \lambda_0 \quad \text{(normal times)} \\
1 - \kappa_Y, & \text{prob. } \lambda_0 \quad \text{(crash)}
\end{cases}$$

- normalize $E_0[Y_2] = 1$, λ_0 measures uncertainty
- normalize $q_0 = 1$, assets are the numeraire

3. Information

- Date 1 public signal reveals updated crash prob. $\lambda_1 \in \{\lambda^L, \lambda^H\}$
- Date 1 private signal costs f and reveals asset payoff Y_2
Securities and liquidity

Assumption (Liquidity)

Investors in a liquidity event trade only claims that they can sell for their present value under public information. We call these liquid claims.

1. Intermediaries buy assets at date 0 and tranche into securities
 - security x with yield μ_x, crash exposure κ_x:

 $$ r_2^x = \begin{cases}
 1 + \mu_x, & \text{if } Y_2 = 1 + \mu_Y \\
 1 - \kappa_x, & \text{if } Y_2 = 1 - \kappa_Y
 \end{cases} $$

 (normal times) (crash)

Moreira and Savov (2015)
Securities and liquidity

Assumption (Liquidity)

Investors in a liquidity event trade only claims that they can sell for their present value under public information. We call these liquid claims.

1. Intermediaries buy assets at date 0 and tranche into securities

 - security x with yield μ_x, crash exposure κ_x:

\[
\tilde{r}_2^x = \begin{cases}
1 + \mu_x, & \text{if } Y_2 = 1 + \mu_Y \\
1 - \kappa_x, & \text{if } Y_2 = 1 - \kappa_Y
\end{cases} \quad \text{(normal times)} \quad \text{and} \quad \text{(crash)}
\]

2. Implications of Assumption 1

 - Liquid security needs sufficiently low κ_x to deter info. production
 - Security liquid when $\lambda_1 = \lambda^L$ might not be when $\lambda_1 = \lambda^H$

Proposition (Securities)

Intermediaries optimally issue the following three securities:

 i. *money* m with $\kappa_m = 0$ is liquid for $\lambda_1 \in \{\lambda^L, \lambda^H\}$ (always-liquid);
 ii. *shadow money* s with $\kappa_s = \bar{\kappa}$ is liquid if $\lambda_1 = \lambda^L$ (fragile-liquid);
 iii. *equity* e with $\kappa_e = 1$ is illiquid,

where $0 < \bar{\kappa} < 1$ under appropriate parameter restrictions.
Balance sheet view

Assets

\[Y_2 \]

Intermediaries

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash exposure</td>
<td></td>
</tr>
<tr>
<td>(\kappa Y)</td>
<td></td>
</tr>
<tr>
<td>Crash collateral</td>
<td></td>
</tr>
<tr>
<td>(1 - \kappa Y)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equity (e_0)</td>
</tr>
<tr>
<td></td>
<td>Shadow money (s_0)</td>
</tr>
<tr>
<td></td>
<td>Money (m_0)</td>
</tr>
</tbody>
</table>

Investors

Wealth

\[m_0 + s_0 + e_0 = 1 \]

Normal times liquidity

\[m_0 + s_0 \]

Crash-proof liquidity

\[m_0 \]

Moreira and Savov (2015)
Equilibrium

Equilibrium allocation solves

$$\max_{m_0, s_0 \geq 0} E_0 \left[h (\psi - 1) C_1 + Y_2 \right]$$

subject to $m_0 + s_0 \leq 1$, the liquidity constraint

$$C_1 \leq \begin{cases} m_0 + s_0 & \text{if } \lambda_1 = \lambda^L, \text{ prob. } 1 - p_H(\lambda_0) \\ m_0 & \text{if } \lambda_1 = \lambda^H, \text{ prob. } p_H(\lambda_0), \end{cases}$$

and the collateral constraint

$$m_0 + s_0 (1 - \kappa) \leq 1 - \kappa_Y.$$

Investors weigh
- the liquidity advantage of money $p_H(\lambda_0)$ against
- the collateral advantage of shadow money κ
Proposition (Equilibrium security issuance)

Suppose that $\bar{\kappa} \leq \kappa_Y$. Then in equilibrium money and shadow money issuance, m_0 and s_0, is as follows:

i. if $p_H(\lambda_0) \leq \bar{\kappa}$, then $m_0 = 0$ and $s_0 = \frac{1 - \kappa_Y}{1 - \bar{\kappa}}$;

ii. if $p_H(\lambda_0) > \bar{\kappa}$, then $m_0 = 1 - \kappa_Y$ and $s_0 = 0$.

Trade-off between quantity and stability of the liquidity supply

- Low uncertainty, shadow money crowds out money (supply large but fragile)
- High uncertainty, only money issued (supply small but stable)
MODEL ROADMAP

1. Static model for analytical expressions

2. Dynamic model for amplification, cycles, and effects of policy
Capital accumulation

1. Two technologies: A high-growth risky; B low-growth safe

\[
\frac{dk^a_t}{k^a_t} = \left[\phi^a (\nu^a_t) - \delta \right] dt - \kappa^a dZ_t
\]
\[
\frac{dk^b_t}{k^b_t} = \left[\phi^b (\nu^b_t) - \delta \right] dt
\]

- investment \(\nu^a_t, \nu^b_t \); adjustment cost \(\phi'' < 0 \); depreciation \(\delta \)
- \(dZ_t \sim \) compensated (mean-zero) Poisson “crash”, exposure \(\kappa^a > 0 \)
- intensity \(\lambda_t \), measures uncertainty
1. Two technologies: \(A \) high-growth risky; \(B \) low-growth safe

\[
dk^a_t / k_t^a = \left[\phi^a (\iota^a_t) - \delta \right] dt - \kappa^a dZ_t
\]

\[
dk^b_t / k_t^b = \left[\phi^b (\iota^b_t) - \delta \right] dt
\]

- investment \(\iota^a_t, \iota^b_t \); adjustment cost \(\phi'' < 0 \); depreciation \(\delta \)
- \(dZ_t \sim \) compensated (mean-zero) Poisson “crash”, exposure \(\kappa^a > 0 \)
- intensity \(\lambda_t \), measures uncertainty

2. Output \(y_t = y^a k_t^a + y^b k_t^b \)

- productivity \(y^a > y^b \)
- capital mix becomes slow-moving state variable

\[
\chi_t = \frac{k_t^a}{k_t^a + k_t^b}
\]
Time-varying uncertainty

1. Latent true probability of a crash $\tilde{\lambda}_t \in \{\lambda^L, \lambda^H\}$
 - follows two-state Markov chain with generator unconditional mean λ and overall transition rate φ
 - agents learn from crashes (dZ_t) and Brownian “news” (dB_t)

Moreira and Savov (2015)
Time-varying uncertainty

1. Latent true probability of a crash $\tilde{\lambda}_t \in \{\lambda^L, \lambda^H\}$
 - follows two-state Markov chain with generator unconditional mean $\bar{\lambda}$ and overall transition rate φ
 - agents learn from crashes (dZ_t) and Brownian “news” (dB_t)

2. Bayesian learning \Rightarrow time-varying uncertainty $\lambda_t = E_t[\tilde{\lambda}_t]$
 - low after a long quiet period (Great Moderation)
 - high after a crash (Reinhart-Rogoff)
 - jumps most from moderately low levels (“Minsky moment”)

$$d\lambda_t = \varphi (\bar{\lambda} - \lambda_t) \, dt + \Sigma_t \left(\nu dB_t + \frac{1}{\lambda_t} dZ_t \right), \quad (4)$$

where $\Sigma_t \equiv (\lambda^H - \lambda_t) (\lambda_t - \lambda^L) = \text{Var}_t (\tilde{\lambda}_t)$

and ν is the precision of the Brownian signal

Moreira and Savov (2015)
Intermediaries and Markets

1. Intermediaries buy assets, set investment, and issue securities to maximize the present value of future profits.
Intermediaries and Markets

1. Intermediaries buy assets, set investment, and issue securities to maximize the present value of future profits.

2. Assets claims to one unit of capital. Asset prices \(q_t^i = q^i(\lambda_t, \chi_t) \)

\[
dq_t^i / q_t^i = \mu_{q,t}^i dt + \sigma_{q,t}^i dB_t - \kappa_{q,t}^i dZ_t, \ i = a, b
\]
Intermediaries and Markets

1. Intermediaries buy assets, set investment, and issue securities to maximize the present value of future profits

2. Assets claims to one unit of capital. Asset prices $q^i_t = q^i(\lambda_t, \chi_t)$

$$
\frac{dq^i_t}{q^i_t} = \mu^i_{q,t} dt + \sigma^i_{q,t} dB_t - \kappa^i_{q,t} dZ_t, \quad i = a, b
$$

3. Intermediaries tranches assets into securities. With two shocks (dZ_t, dB_t), a generic security x's return has the form

$$
dr^x_t = \mu^x_{x,t} dt + \sigma^x_{x,t} dB_t - \kappa^x_{x,t} dZ_t. \quad (5)
$$

Now we take the securities and liquidity profiles from before as given

i. money m with $\kappa_{m,t} = \sigma_{m,t} = 0$ is liquid with probability 1 (always-liquid);

ii. shadow money s with $\kappa_{s,t} = \kappa$ and $\sigma_{s,t} = 0$ is liquid with probability $1 - p_H(\lambda_t)$, where $p^H(\lambda_t) > 0$ (fragile-liquid);

iii. equity e with $\kappa_{e,t} = 1$ and $|\sigma_{e,t}| > 0$ is illiquid.
Demand for liquidity and securities expected returns

\[\rho V_t dt = \max_{m_t, s_t, d\psi c_t, c_t} E_t \left[W_t \left(\psi d\psi c_t dz_t + c_t dt \right) \right] + E_t [dV_t] \quad (6) \]

subject to \(c_t \leq \bar{c}_t \) and the budget and liquidity constraints

\[\frac{dW_t}{W_t} = dr_t^e + m_t (dr_t^m - dr_t^e) + s_t (dr_t^s - dr_t^e) - c_t dt - d\psi c_t dz_t \]

\[dc_t \leq \begin{cases} m_t + s_t & \text{prob. } 1 - p_H (\lambda_t) \\ m_t & \text{prob. } p_H (\lambda_t). \end{cases} \]
Demand for liquidity and securities expected returns

\[\rho V_t dt = \max_{m_t, s_t, d c_t^\psi, c_t} E_t \left[W_t \left(\psi d c_t^\psi dz_t + c_t dt \right) \right] + E_t \left[d V_t \right] \tag{6} \]

subject to \(c_t^\psi \leq \overline{c}_t^\psi \) and the budget and liquidity constraints

\[\frac{d W_t}{W_t} = dr_t^e + m_t (dr_t^m - dr_t^e) + s_t (dr_t^s - dr_t^e) - c_t dt - d c_t^\psi dz_t \]

\[d c_t^\psi \leq \begin{cases} m_t + s_t \text{ prob. } 1 - p_H (\lambda_t) \\ m_t \text{ prob. } p_H (\lambda_t) \end{cases} \]

Risk-neutrality implies the problem simplifies to

\[\rho = \max_{m_t, s_t} h(\psi - 1) \left[\left[1 - p_H (\lambda_t) \right] \int_0^\infty \min\{\overline{c}_t^\psi, m_t + s_t\} dF \left(\overline{c}_t^\psi \right) \\
+ p_H (\lambda_t) \int_0^\infty \min\{\overline{c}_t^\psi, m_t\} dF \left(\overline{c}_t^\psi \right) \right] + \mu W_t. \tag{7} \]

where \(F(\overline{c}_t^\psi) = \text{Exp}(\eta) \)
Proposition (Security expected returns)

The expected returns of money ($\mu_{m,t}$), shadow money ($\mu_{s,t}$), and equity ($\mu_{e,t}$) satisfy

$$
\mu_{e,t} - \mu_{m,t} = h(\psi - 1) \left([1 - p_H(\lambda_t)] e^{-\eta(m_t + s_t)} + p_H(\lambda_t) e^{-\eta m_t} \right)
$$

$$
\mu_{s,t} - \mu_{m,t} = h(\psi - 1) p_H(\lambda_t) e^{-\eta m_t}.
$$

The aggregate discount rate ($\mu_{W,t}$) satisfies

$$
\mu_{W,t} = \left[\rho - \frac{h}{\eta} (\psi - 1) \right] + \frac{1}{\eta} (\mu_{e,t} - \mu_{m,t}).
$$

A lower liquidity premium reduces the cost of consuming in a high marginal utility state, increasing savings.

Moreira and Savov (2015)
Intermediaries

\[0 = \max_{m,s,k^a,k^b,\iota^a,\iota^b} \left[(y^a - \iota^a) k^a + (y^b - \iota^b) k^b \right] dt + E_t [dA_t] \]

\[+ A_t \left[m(\mu_{e,t} - \mu_{m,t}) + s(\mu_{e,t} - \mu_{s,t}) - \mu_{e,t} \right] + E_t [dV_t], \]

subject to the collateral constraint

\[m_t + s_t (1 - \kappa) \leq 1 - \kappa_A, t, [\theta_t] \] (8)
Intermediaries

\[0 = \max_{m,s,k^a,k^b,\nu^a,\nu^b} \left[(y^a - \nu^a) k^a + (y^b - \nu^b) k^b \right] dt + E_t [dA_t] \]
\[+ A_t [m(\mu_e,t - \mu_m,t) + s(\mu_e,t - \mu_s,t) - \mu_e,t] + E_t [dV_t], \]

subject to the collateral constraint

\[m_t + s_t (1 - \kappa) \leq 1 - \kappa_{A,t}, \quad [\theta_t] \quad (8)\]

where the aggregate collateral value is the value weighted sum of asset collateral values

\[1 - \kappa_{A,t} = \chi^q_t (1 - \kappa^a_k) (1 - \kappa^a_q,t) + (1 - \chi^q_t) (1 - \kappa^b_q,t), \quad (9)\]

- collateral values depend on the endogenous price exposure.
- \(\theta\) low when asset B supply is high or shadow-money money spread \(\mu_s,t - \mu_m,t\) is high
- \(1 - \kappa^b_q,t \leq 1\) safe asset becomes risk because changes in the collateral premium \(\theta_t\)
Intermediaries and the supply of liquidity

Proposition (Equilibrium security issuance)

Let $\mathcal{M}_t \equiv \frac{1}{\eta} \log \left(\frac{\kappa}{1-\kappa} \frac{1-p_H(\lambda_t)}{p_H(\lambda_t)} \right)$. Then in equilibrium issuance follows

i. if $\mathcal{M}_t > \min \left\{ \frac{\kappa_A,t}{\kappa}, \frac{1-\kappa_A,t}{1-\kappa} \right\}$,
 \[m_t = \max \left\{ 0, 1 - \frac{\kappa_A,t}{\kappa} \right\} \text{ and } s_t = \min \left\{ \frac{1-\kappa_A,t}{1-\kappa}, \frac{\kappa_A,t}{\kappa} \right\} ; \]

ii. if $0 \leq \mathcal{M}_t \leq \min \left\{ \frac{\kappa_A,t}{\kappa}, \frac{1-\kappa_A,t}{1-\kappa} \right\}$,
 \[m_t = 1 - \kappa_A,t - (1 - \kappa) \mathcal{M}_t \text{ and } s_t = \mathcal{M}_t ; \text{ and} \]

iii. if $\mathcal{M}_t < 0$, $m_t = 1 - \kappa_A,t$ and $s_t = 0$.

\mathcal{M}_t measures marginal value of first unit of shadow money
Intermediaries and the supply of liquidity

\[\min \left\{ \frac{1 - \kappa_A, t}{1 - \kappa}, \frac{\kappa_A, t}{\kappa} \right\} \]

Moreira and Savov (2015)
1. Intermediaries can scale up their balance sheets by issuing more securities and buying more assets. We get a PDE:

\[q^i_t = \frac{y^i - \nu^i_t}{(\mu_{W,t} - \theta_t [1 - (1 - \kappa^i_t) - (1 - \kappa^A_t)]) - [\mu^i_{q,t} + \kappa^i_k \kappa^i_{q,t} \lambda_t + \phi (\nu^i_t) - \delta]} \]

- term in brackets is the asset expected return: assets with higher collateral value discounted at a lower rate
- When collateral becomes scarce (high \(\theta \)), assets with high collateral value experience flight to quality
Intermediaries: asset prices and investment

1. Intermediaries can scale up their balance sheets by issuing more securities and buying more assets. We get a PDE:

\[
q^i_t = \frac{y^i - \nu^i_t}{\left(\mu^W, t - \theta_t \left[(1 - \kappa^i_t) - (1 - \kappa^A, t) \right] \right) - \left[\mu^i_{q, t} + \kappa^i_k \kappa^i_{q, t} \lambda_t + \phi \left(\nu^i_t \right) - \delta \right]}
\]

- The term in brackets is the asset expected return: assets with higher collateral value discounted at a lower rate.
- When collateral becomes scarce (high \(\theta \)), assets with high collateral value experience flight to quality.

2. Intermediaries set investment, driven by standard \(q \)-theory:

\[
1 = q^i_t \phi' \left(\nu^i_t \right), \quad i = a, b.
\]
RESULTS

1. Parameter values in paper
2. Model in closed form up to prices
3. Solve for prices $q^i(\chi, \lambda), i = a, b$ numerically using projection methods
1. Shadow banking booms in low uncertainty-low collateral states
 - crowds out money creation in booms
 - disappears when uncertainty rises from a low level (e.g. August 07)

2. Money is produced most when collateral is abundant (low χ).
Discount rates

1. Higher uncertainty causes the shadow-money money spread to rise, shadow banking contracts, lower liquidity supply causes liquidity premium and overall discount rate to rise.

2. Discount rates are more uncertainty-sensitive when shadow banking activity is high (low uncertainty, low collateral)

Moreira and Savov (2015)
Asset markets

1. Higher uncertainty causes the collateral premium to rise, lowers the price of the risky asset and raises the price of the safe asset.

2. Riskier asset mix χ means less collateral, lowers q^a and raises q^b.

Moreira and Savov (2015)
1. Growth more uncertainty-sensitive when shadow banking is high (collateral and uncertainty are low)

2. Real boom coincides with shadow banking boom
1. Capital mix drifts towards risky asset during shadow banking boom
2. Capital mix drifts towards safe asset during bust
⇒ Fragility buildup in booms, collateral mining in bust
Collateral runs

1. Collateral values fall as prices fall ⇒ prices fall more, etc.
2. Amplifies liquidity contraction
3. Flight to quality implies safe assets have excess collateral
Cycles are a product of shadow banking

Moreira and Savov (2015)
EFFECTS OF POLICY INTERVENTIONS
QE1 - Large-Scale Asset Purchases

1. Fed buys risky a and sells safe b asset (Ricardian)

![Diagram showing announcement effect on a and b prices]

Ex ante effect on a price q^a

Ex ante effect on b price q^b

Moreira and Savov (2015)
QE2 - Operation Twist

 - long-term safe bond acts as crash hedge due to flight to quality
 - short-term safe bond safe but not a hedge

2. OT reduces the supply of collateral \implies liquidity provision falls
 \implies discount rates rise, especially for risky/productive assets

Moreira and Savov (2015)
Liquidity requirements

1. Limit liquidity mismatch: \(m_t + s_t \leq \bar{l} \)

3. Mitigate collateral runs, enhance financial stability

4. \textit{But} higher discount rates, lower prices

\begin{align*}
\text{Asset a price} &\quad \text{Aggregate collateral} \\
\lambda^L &\quad 0.54 \quad \lambda^L &\quad 0.54 \\
0.2 &\quad 0.56 \quad 0.2 &\quad 0.56 \\
0.4 &\quad 0.58 \quad 0.4 &\quad 0.58 \\
0.6 &\quad 0.6 \quad 0.6 &\quad 0.6 \\
0.8 &\quad 0.62 \quad 0.8 &\quad 0.62 \\
\lambda^H &\quad 1.1 \quad \lambda^H &\quad 1.1 \\
\lambda &\quad 1.2 \quad \lambda &\quad 1.2 \\
\lambda &\quad 1.3 \quad \lambda &\quad 1.3 \\
\lambda &\quad 1.4 \quad \lambda &\quad 1.4 \\
\lambda &\quad 15\% \text{ liquidity requirement} \quad \text{---} \quad \text{No liquidity requirement}
\end{align*}
Monetary policy normalization

1. Pre-crisis view: short-term rate captures monetary policy stance

2. Our framework:

\[
Tbill \ rate = \left(\text{aggregate discount rate} \right) - \theta_t \left(\text{collateral value of Tbill} \right)
\]

⇒ Tbill rate can be low if collateral premium \(\theta_t \) is high and policy tight

3. Reverse repo facility
 - “… should help to establish a floor on the level of overnight rates.” (Dudley, 2013)
 - accommodative, even though pushes the safe rate up
 - releases collateral to financial system (\(\theta_t \downarrow \))
Takeaways

1. Liquidity transformation and the macro cycle
 - tradeoff between quantity and fragility of liquidity provision

2. Shadow banking expands liquidity supply in booms
 - lower discount rates, more investment, more growth
 - increases economic and financial fragility

3. Framework has implications for
 - monetary policy, financial stability regulation

Moreira and Savov (2015)
Takeaways

1. Liquidity transformation and the macro cycle
 - tradeoff between quantity and fragility of liquidity provision

2. Shadow banking expands liquidity supply in booms
 - lower discount rates, more investment, more growth
 - increases economic and financial fragility

3. Framework has implications for
 - monetary policy, financial stability regulation

Is it better to have been liquid and lost than never to have been liquid at all?

Moreira and Savov (2015)
APPENDIX
Benchmark parameters

This table contains the benchmark values for the model parameters used to produce results for the dynamic model. The investment cost function is parameterized as \(\phi(\iota) = \frac{1}{\gamma \sqrt{1 + 2\gamma \iota - 1}} \). We use the specification implied by the static model for the probability that shadow money becomes illiquid. i.e. \(p_H(\lambda) = \frac{\lambda - \lambda^L}{\lambda^H - \lambda^L} \).

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asset cash flows</td>
<td>(y^a, y^b)</td>
<td>0.138, 0.1</td>
</tr>
<tr>
<td>Depreciation rate</td>
<td>(\delta)</td>
<td>0.1</td>
</tr>
<tr>
<td>Exogenous aggregate growth</td>
<td>(\mu_0)</td>
<td>0.01</td>
</tr>
<tr>
<td>Adjustment cost parameter</td>
<td>(\gamma)</td>
<td>3</td>
</tr>
<tr>
<td>Asset crash exposures</td>
<td>(\kappa^a, \kappa^b)</td>
<td>0.5, 0</td>
</tr>
<tr>
<td>Information sensitivity constraint:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crash exposure limit for fragile liquid securities</td>
<td>(\overline{\kappa})</td>
<td>0.7</td>
</tr>
<tr>
<td>Uncertainty:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low/high uncertainty states</td>
<td>(\lambda^L, \lambda^H)</td>
<td>0.005, 1</td>
</tr>
<tr>
<td>Average uncertainty</td>
<td>(\overline{\lambda})</td>
<td>0.0245</td>
</tr>
<tr>
<td>Uncertainty rate of mean reversion</td>
<td>(\varphi)</td>
<td>0.5</td>
</tr>
<tr>
<td>Uncertainty news signal precision</td>
<td>(1/\sigma)</td>
<td>0.1</td>
</tr>
<tr>
<td>Preferences and liquidity events:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquidity event frequency</td>
<td>(h)</td>
<td>0.28</td>
</tr>
<tr>
<td>Liquidity event marginal utility</td>
<td>(\psi)</td>
<td>5</td>
</tr>
<tr>
<td>Average size of liquidity event</td>
<td>(1/\eta)</td>
<td>0.33</td>
</tr>
<tr>
<td>Subjective discounting parameter</td>
<td>(\rho)</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Moreira and Savov (2015)
Uncertainty shock impulse responses

Uncertainty λ

Capital mix χ

Log output $\log Y$

Asset a price q^a

Asset b price q^b

Aggregate collateral $1 - \kappa_A$

Without shadow banking

With shadow banking

Moreira and Savov (2015)
Crash shock impulse responses

- Uncertainty λ
- Capital mix χ
- Log output $\log Y$
- Asset a price q^a
- Asset b price q^b
- Aggregate collateral $1 - \kappa_A$

Moreira and Savov (2015)